Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients

Asymptot. Anal. Pub Date : 2018-07-24 DOI:10.3233/ASY-181504
Marc Josien
{"title":"Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients","authors":"Marc Josien","doi":"10.3233/ASY-181504","DOIUrl":null,"url":null,"abstract":"This article is about the $\\mathbb{Z}^d$-periodic Green function $G_n(x,y)$ of the multiscale elliptic operator $Lu=-{\\rm div}\\left( A(n\\cdot) \\cdot \\nabla u \\right)$, where $A(x)$ is a $\\mathbb{Z}^d$-periodic, coercive, and H\\\"older continuous matrix, and $n$ is a large integer. We prove here pointwise estimates on $G_n(x,y)$, $\\nabla_x G_n(x,y)$, $\\nabla_y G_n(x,y)$ and $\\nabla_x \\nabla_y G_n(x,y)$ in dimensions $d \\geq 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"112 1","pages":"227-246"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article is about the $\mathbb{Z}^d$-periodic Green function $G_n(x,y)$ of the multiscale elliptic operator $Lu=-{\rm div}\left( A(n\cdot) \cdot \nabla u \right)$, where $A(x)$ is a $\mathbb{Z}^d$-periodic, coercive, and H\"older continuous matrix, and $n$ is a large integer. We prove here pointwise estimates on $G_n(x,y)$, $\nabla_x G_n(x,y)$, $\nabla_y G_n(x,y)$ and $\nabla_x \nabla_y G_n(x,y)$ in dimensions $d \geq 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.
一类具有周期振荡系数的椭圆型方程的周期格林函数的分解和点态估计
本文是关于多尺度椭圆算子$Lu=-{\rm div}\left( A(n\cdot) \cdot \nabla u \right)$的$\mathbb{Z}^d$ -周期Green函数$G_n(x,y)$,其中$A(x)$是一个$\mathbb{Z}^d$ -周期、强制和Hölder连续矩阵,$n$是一个大整数。我们在这里证明了在维度$d \geq 2$上对$G_n(x,y)$, $\nabla_x G_n(x,y)$, $\nabla_y G_n(x,y)$和$\nabla_x \nabla_y G_n(x,y)$的点估计。此外,我们推导出了这个Green函数的显式分解,这是一个独立的兴趣。这些结果也适用于系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信