{"title":"Mildly Short Vectors in Cyclotomic Ideal Lattices in Quantum Polynomial Time","authors":"R. Cramer, L. Ducas, B. Wesolowski","doi":"10.1145/3431725","DOIUrl":null,"url":null,"abstract":"In this article, we study the geometry of units and ideals of cyclotomic rings and derive an algorithm to find a mildly short vector in any given cyclotomic ideal lattice in quantum polynomial time, under some plausible number-theoretic assumptions. More precisely, given an ideal lattice of the cyclotomic ring of conductor m, the algorithm finds an approximation of the shortest vector by a factor exp (Õ(√ m)). This result exposes an unexpected hardness gap between these structured lattices and general lattices: The best known polynomial time generic lattice algorithms can only reach an approximation factor exp (Õ(m)). Following a recent series of attacks, these results call into question the hardness of various problems over structured lattices, such as Ideal-SVP and Ring-LWE, upon which relies the security of a number of cryptographic schemes. NOTE. This article is an extended version of a conference paper [11]. The results are generalized to arbitrary cyclotomic fields. In particular, we also extend some results of Reference [10] to arbitrary cyclotomic fields. In addition, we prove the numerical stability of the method of Reference [10]. These extended results appeared in the Ph.D. dissertation of the third author [46].","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"28 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this article, we study the geometry of units and ideals of cyclotomic rings and derive an algorithm to find a mildly short vector in any given cyclotomic ideal lattice in quantum polynomial time, under some plausible number-theoretic assumptions. More precisely, given an ideal lattice of the cyclotomic ring of conductor m, the algorithm finds an approximation of the shortest vector by a factor exp (Õ(√ m)). This result exposes an unexpected hardness gap between these structured lattices and general lattices: The best known polynomial time generic lattice algorithms can only reach an approximation factor exp (Õ(m)). Following a recent series of attacks, these results call into question the hardness of various problems over structured lattices, such as Ideal-SVP and Ring-LWE, upon which relies the security of a number of cryptographic schemes. NOTE. This article is an extended version of a conference paper [11]. The results are generalized to arbitrary cyclotomic fields. In particular, we also extend some results of Reference [10] to arbitrary cyclotomic fields. In addition, we prove the numerical stability of the method of Reference [10]. These extended results appeared in the Ph.D. dissertation of the third author [46].