Exploring subspace clustering for recommendations

Katharina Rausch, Eirini Ntoutsi, K. Stefanidis, H. Kriegel
{"title":"Exploring subspace clustering for recommendations","authors":"Katharina Rausch, Eirini Ntoutsi, K. Stefanidis, H. Kriegel","doi":"10.1145/2618243.2618283","DOIUrl":null,"url":null,"abstract":"Typically, recommendations are computed by considering users similar to the user in question. However, scanning the whole database of users for locating similar users is expensive. Existing approaches build user profiles by employing full-dimensional clustering to find sets of similar users. As the datasets we deal with are high-dimensional and incomplete, full-dimensional clustering is not the best option. To this end, we explore the fault tolerance subspace clustering approach that detects clusters of similar users in subspaces of the original feature space and also allows for missing values. Our experiments on real movie datasets show that the diversification of the similar users through subspace clustering results in better recommendations comparing to traditional collaborative filtering and full dimensional clustering approaches.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"5 1","pages":"42:1-42:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Typically, recommendations are computed by considering users similar to the user in question. However, scanning the whole database of users for locating similar users is expensive. Existing approaches build user profiles by employing full-dimensional clustering to find sets of similar users. As the datasets we deal with are high-dimensional and incomplete, full-dimensional clustering is not the best option. To this end, we explore the fault tolerance subspace clustering approach that detects clusters of similar users in subspaces of the original feature space and also allows for missing values. Our experiments on real movie datasets show that the diversification of the similar users through subspace clustering results in better recommendations comparing to traditional collaborative filtering and full dimensional clustering approaches.
探索子空间聚类以获得推荐
通常,通过考虑与所讨论的用户相似的用户来计算推荐。但是,扫描整个用户数据库来定位相似的用户是非常昂贵的。现有方法通过使用全维聚类来寻找相似用户集来构建用户配置文件。由于我们处理的数据集是高维且不完整的,因此全维聚类并不是最好的选择。为此,我们探索了容错子空间聚类方法,该方法在原始特征空间的子空间中检测相似用户的聚类,并允许缺失值。我们在真实电影数据集上的实验表明,与传统的协同过滤和全维聚类方法相比,通过子空间聚类实现相似用户的多样化可以获得更好的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信