{"title":"Unbounded growth of the energy density associated to the Schrödinger map and the binormal flow","authors":"V. Banica, L. Vega","doi":"10.4171/aihpc/24","DOIUrl":null,"url":null,"abstract":"We consider the binormal flow equation, which is a model for the dynamics of vortex filaments in Euler equations. Geometrically it is a flow of curves in three dimensions, explicitly connected to the 1-D Schrödinger map with values on the 2-D sphere, and to the 1-D cubic Schrödinger equation. Although these equations are completely integrable we show the existence of an unbounded growth of the energy density. The density is given by the amplitude of the high frequencies of the derivative of the tangent vectors of the curves, thus giving information of the oscillation at small scales. In the setting of vortex filaments the variation of the tangent vectors is related to the derivative of the direction of the vorticity, that according to the Constantin-Fefferman-Majda criterion plays a relevant role in the possible development of singularities for Euler equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/24","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the binormal flow equation, which is a model for the dynamics of vortex filaments in Euler equations. Geometrically it is a flow of curves in three dimensions, explicitly connected to the 1-D Schrödinger map with values on the 2-D sphere, and to the 1-D cubic Schrödinger equation. Although these equations are completely integrable we show the existence of an unbounded growth of the energy density. The density is given by the amplitude of the high frequencies of the derivative of the tangent vectors of the curves, thus giving information of the oscillation at small scales. In the setting of vortex filaments the variation of the tangent vectors is related to the derivative of the direction of the vorticity, that according to the Constantin-Fefferman-Majda criterion plays a relevant role in the possible development of singularities for Euler equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.