Shape Correspondence by Aligning Scale-invariant LBO Eigenfunctions

Amit Bracha, Oshri Halimi, R. Kimmel
{"title":"Shape Correspondence by Aligning Scale-invariant LBO Eigenfunctions","authors":"Amit Bracha, Oshri Halimi, R. Kimmel","doi":"10.2312/3dor.20201159","DOIUrl":null,"url":null,"abstract":"When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/3dor.20201159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.
对准尺度不变LBO特征函数的形状对应
当匹配非刚性形状时,正则或尺度不变的拉普拉斯-贝尔特拉米算子(LBO)特征函数可以作为等距变换不变的内在描述子。然而,计算出的两个准等距曲面的特征函数可能有很大的不同。这种差异包括符号歧义和可能的旋转和反射在子空间内由对应于相似特征值的特征函数所跨越。因此,如果不对齐相应的特征空间,就很难使用特征函数作为描述符。在这里,我们提出用带正交矩阵来模拟两个准等距形状的特征空间之间的相对变换,并提出了一个旨在估计该矩阵的框架。估计这个变换使我们能够将一个形状的特征函数与另一个形状的特征函数对齐,然后可以将其用作内在的,一致的和鲁棒的描述子。为了估计变换,我们使用无监督谱网框架,该框架使用由LBO的尺度不变版本的特征函数给出的描述符。然后,利用谱训练机制,我们找到了一个带限正交矩阵,使两组特征函数对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信