Model-Guided Data-Driven Optimization for Automotive Compression Ignition Engine Systems

IF 2.1 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Qingyuan Tan, Xiang-yang Chen, Y. Tan, M. Zheng
{"title":"Model-Guided Data-Driven Optimization for Automotive Compression Ignition Engine Systems","authors":"Qingyuan Tan, Xiang-yang Chen, Y. Tan, M. Zheng","doi":"10.1115/1.2019-MAR-5","DOIUrl":null,"url":null,"abstract":"Essentially, the performance improvement of automotive systems is a multi-objective optimization problem [1–4] due to the challenges in both operation management and control. The interconnected dynamics inside the automotive system normally requires precise tuning and coordination of accessible system inputs. In the past, such optimization problems have been approximately solved through expensive calibration procedures or an off-line local model-based approaches where either a regressive model or a first-principle model is used. The model-based optimization provides the advantage of finding the optimal model parameters to allow the model to be used to predict the real system behavior reasonably [5]. However, other than the model complexities, there are practically two issues facing the integrity of these models: modeling uncertainty due to inaccurate parameter values and/or unmodeled dynamics, and locally effective range around operating points. As a result, the optimum solutions extracted from the model-based approach could be subject to failure of expected performance [6].","PeriodicalId":18406,"journal":{"name":"Mechanical Engineering","volume":"36 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.2019-MAR-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Essentially, the performance improvement of automotive systems is a multi-objective optimization problem [1–4] due to the challenges in both operation management and control. The interconnected dynamics inside the automotive system normally requires precise tuning and coordination of accessible system inputs. In the past, such optimization problems have been approximately solved through expensive calibration procedures or an off-line local model-based approaches where either a regressive model or a first-principle model is used. The model-based optimization provides the advantage of finding the optimal model parameters to allow the model to be used to predict the real system behavior reasonably [5]. However, other than the model complexities, there are practically two issues facing the integrity of these models: modeling uncertainty due to inaccurate parameter values and/or unmodeled dynamics, and locally effective range around operating points. As a result, the optimum solutions extracted from the model-based approach could be subject to failure of expected performance [6].
汽车压缩点火发动机系统模型导向数据驱动优化
从本质上讲,汽车系统的性能改进是一个多目标优化问题[1-4],因为它同时面临着运行管理和控制方面的挑战。汽车系统内部相互关联的动态通常需要对可访问的系统输入进行精确的调整和协调。在过去,这种优化问题已经通过昂贵的校准程序或离线的基于局部模型的方法近似解决,其中回归模型或第一原理模型被使用。基于模型的优化提供了寻找最优模型参数的优势,使模型能够合理地预测实际系统行为[5]。然而,除了模型的复杂性之外,这些模型的完整性实际上还面临着两个问题:由于参数值不准确和/或未建模的动力学而导致的建模不确定性,以及操作点周围的局部有效范围。因此,从基于模型的方法中提取的最优解可能无法达到预期的性能[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Engineering
Mechanical Engineering 工程技术-工程:机械
CiteScore
0.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信