On Frèchet normal cone for nonsmooth mathematical programming problems with switching constraints                                                    

IF 1.8 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Balendu Bhooshan Upadhyay, Zahra Jafariani, Nader Kanzi, Maryam Naderi Parizi
{"title":"On Frèchet normal cone for nonsmooth mathematical programming problems with switching constraints\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n ","authors":"Balendu Bhooshan Upadhyay, Zahra Jafariani, Nader Kanzi, Maryam Naderi Parizi","doi":"10.1051/ro/2023138","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of a class of nonsmooth programming problems with switching constraints (abbreviated as, (NMPSC)), where all the involved functions in the switching constraints are assumed to be locally Lipschitz. We investigate the properties of Frèchet normal cone of (NMPSC). In particular, we introduce two Guignard type constraint qualifications for (NMPSC) in terms of Michel-Penot subdifferential. Moreover, we derive two estimates for the Fr‘echet normal cone of (NMPSC) and further establish stationarity conditions at an optimal solution for (NMPSC). To the best of our knowledge, this is for the first time Frèchet normal cone for (NMPSC) have been studied in the setting of Euclidean spaces.","PeriodicalId":54509,"journal":{"name":"Rairo-Operations Research","volume":"3 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rairo-Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1051/ro/2023138","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the study of a class of nonsmooth programming problems with switching constraints (abbreviated as, (NMPSC)), where all the involved functions in the switching constraints are assumed to be locally Lipschitz. We investigate the properties of Frèchet normal cone of (NMPSC). In particular, we introduce two Guignard type constraint qualifications for (NMPSC) in terms of Michel-Penot subdifferential. Moreover, we derive two estimates for the Fr‘echet normal cone of (NMPSC) and further establish stationarity conditions at an optimal solution for (NMPSC). To the best of our knowledge, this is for the first time Frèchet normal cone for (NMPSC) have been studied in the setting of Euclidean spaces.
具有切换约束的非光滑数学规划问题的fr切法线锥
本文研究了一类具有切换约束的非光滑规划问题(简称NMPSC),其中切换约束中所有涉及的函数都被假定为局部Lipschitz。研究了(NMPSC)的fr切法锥的性质。特别地,我们根据micheli - penot子微分引入了(NMPSC)的两个Guignard型约束条件。此外,我们得到了(NMPSC)的Fr ' cheet法锥的两个估计,并进一步建立了(NMPSC)最优解的平稳性条件。据我们所知,这是第一次在欧几里得空间中研究(NMPSC)的fr切法向锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rairo-Operations Research
Rairo-Operations Research 管理科学-运筹学与管理科学
CiteScore
3.60
自引率
22.20%
发文量
206
审稿时长
>12 weeks
期刊介绍: RAIRO-Operations Research is an international journal devoted to high-level pure and applied research on all aspects of operations research. All papers published in RAIRO-Operations Research are critically refereed according to international standards. Any paper will either be accepted (possibly with minor revisions) either submitted to another evaluation (after a major revision) or rejected. Every effort will be made by the Editorial Board to ensure a first answer concerning a submitted paper within three months, and a final decision in a period of time not exceeding six months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信