{"title":"GaN microlasers for integrated photonics: waveguide polariton lasers and microdisk lasers","authors":"T. Guillet","doi":"10.1117/12.2594565","DOIUrl":null,"url":null,"abstract":"The GaN photonic platform is of large interest for broadband integrated photonics applications, from near-UV to visible and near-IR. Here we present the latest developments in near-UV microlasers and their coupling to gratings and waveguides, based on GaN active layers. We demonstrate two iconic NUV microlasers: (i) a microdisk laser based on GaN/AlGaN quantum wells, coupled to a waveguide and an outcoupling grating; (ii) a ridge waveguide polariton laser operating with ultra-short Fabry-Perot ridge cavities (5-60µm), that is not governed by Bernard-Durrafourg condition (population inversion) as in standard ridge interband lasers. Both lasers operate around 380nm.","PeriodicalId":23471,"journal":{"name":"UV and Higher Energy Photonics: From Materials to Applications 2021","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UV and Higher Energy Photonics: From Materials to Applications 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The GaN photonic platform is of large interest for broadband integrated photonics applications, from near-UV to visible and near-IR. Here we present the latest developments in near-UV microlasers and their coupling to gratings and waveguides, based on GaN active layers. We demonstrate two iconic NUV microlasers: (i) a microdisk laser based on GaN/AlGaN quantum wells, coupled to a waveguide and an outcoupling grating; (ii) a ridge waveguide polariton laser operating with ultra-short Fabry-Perot ridge cavities (5-60µm), that is not governed by Bernard-Durrafourg condition (population inversion) as in standard ridge interband lasers. Both lasers operate around 380nm.