DIANA: An End-to-End Energy-Efficient Digital and ANAlog Hybrid Neural Network SoC

Kodai Ueyoshi, I. Papistas, Pouya Houshmand, G. M. Sarda, V. Jain, Man Shi, Qilin Zheng, Sebastian Giraldo, Peter Vrancx, J. Doevenspeck, Debjyoti Bhattacharjee, S. Cosemans, A. Mallik, P. Debacker, D. Verkest, M. Verhelst
{"title":"DIANA: An End-to-End Energy-Efficient Digital and ANAlog Hybrid Neural Network SoC","authors":"Kodai Ueyoshi, I. Papistas, Pouya Houshmand, G. M. Sarda, V. Jain, Man Shi, Qilin Zheng, Sebastian Giraldo, Peter Vrancx, J. Doevenspeck, Debjyoti Bhattacharjee, S. Cosemans, A. Mallik, P. Debacker, D. Verkest, M. Verhelst","doi":"10.1109/ISSCC42614.2022.9731716","DOIUrl":null,"url":null,"abstract":"Energy-efficient matrix-vector multiplications (MVMs) are key to bringing neural network (NN) inference to edge devices. This has led to a wide range of state-of-the-art MVM acceleration chips, which fall into two categories: 1) Digital NN accelerators [1]–[2], constituting widely parallel multiply-accumulate (MAC) arrays at medium (typically 4-8b) precision. 2) Analog in-memory compute (AiMC) NN accelerators [3]–[4], which enable much higher energy efficiencies and throughput per unit area at the cost of a reduced computational precision, reduced dataflow flexibility, and resulting reduced mapping efficiency for some layer configurations. Neither of these approaches dominates the other, as it depends on the layer type which approach is the optimal. The ideal processor would enable exploiting both digital and AiMC NN acceleration concepts and select the best accelerator depending on the layer characteristics. Consequently, this work presents DIANA, a low-power NN processing SoC, comprising a precision-scalable digital NN accelerator, an AiMC core, an optimized shared-memory subsystem and a RISC-V host processor to achieve SOTA end-to-end inference at the edge. This SoC includes innovations in: a) its 16x16 digital NN core with flexible dataflow for fully connected and high-precision CONV layer execution, b) its 1152x512 AiMC core with SIMD digital post-processing and support for output unrolling for improving array utilization, and c) a shared memory system supporting efficient layer-fused execution schedules, controlled by the RISC-V. This allows simultaneous execution of subsequent layers across the digital and analog cores, assigning high-precision layers and layers with limited AiMC utilization (e.g. FC layers and layers with low channel count) to the digital core, and all other intermediate layers to the AiMC core. A top-level overview of the designed system and its highlights is depicted in Fig. 15.6.1.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Energy-efficient matrix-vector multiplications (MVMs) are key to bringing neural network (NN) inference to edge devices. This has led to a wide range of state-of-the-art MVM acceleration chips, which fall into two categories: 1) Digital NN accelerators [1]–[2], constituting widely parallel multiply-accumulate (MAC) arrays at medium (typically 4-8b) precision. 2) Analog in-memory compute (AiMC) NN accelerators [3]–[4], which enable much higher energy efficiencies and throughput per unit area at the cost of a reduced computational precision, reduced dataflow flexibility, and resulting reduced mapping efficiency for some layer configurations. Neither of these approaches dominates the other, as it depends on the layer type which approach is the optimal. The ideal processor would enable exploiting both digital and AiMC NN acceleration concepts and select the best accelerator depending on the layer characteristics. Consequently, this work presents DIANA, a low-power NN processing SoC, comprising a precision-scalable digital NN accelerator, an AiMC core, an optimized shared-memory subsystem and a RISC-V host processor to achieve SOTA end-to-end inference at the edge. This SoC includes innovations in: a) its 16x16 digital NN core with flexible dataflow for fully connected and high-precision CONV layer execution, b) its 1152x512 AiMC core with SIMD digital post-processing and support for output unrolling for improving array utilization, and c) a shared memory system supporting efficient layer-fused execution schedules, controlled by the RISC-V. This allows simultaneous execution of subsequent layers across the digital and analog cores, assigning high-precision layers and layers with limited AiMC utilization (e.g. FC layers and layers with low channel count) to the digital core, and all other intermediate layers to the AiMC core. A top-level overview of the designed system and its highlights is depicted in Fig. 15.6.1.
一种端到端的高能效数字和模拟混合神经网络SoC
高效矩阵向量乘法(MVMs)是将神经网络(NN)推理应用于边缘设备的关键。这导致了各种最先进的MVM加速芯片的出现,它们分为两类:1)数字神经网络加速器[1]-[2],以中等(通常为4-8b)精度构成广泛并行的乘法累加(MAC)阵列。2)模拟内存计算(AiMC)神经网络加速器[3]-[4],它可以实现更高的能量效率和单位面积的吞吐量,但代价是计算精度降低,数据流灵活性降低,并导致某些层配置的映射效率降低。这两种方法都不占优势,因为这取决于层类型,哪种方法是最优的。理想的处理器将能够利用数字和AiMC神经网络加速概念,并根据层特性选择最佳加速器。因此,这项工作提出了DIANA,一种低功耗神经网络处理SoC,包括一个精确可扩展的数字神经网络加速器,一个AiMC核心,一个优化的共享内存子系统和一个RISC-V主机处理器,以实现SOTA端到端边缘推理。该SoC包括以下创新:a)其16x16数字NN核心具有灵活的数据流,可用于完全连接和高精度CONV层执行;b)其1152x512 AiMC核心具有SIMD数字后处理和支持输出展开,以提高阵列利用率;c)共享内存系统支持由RISC-V控制的高效层融合执行时间表。这允许在数字和模拟核上同时执行后续层,将高精度层和AiMC利用率有限的层(例如FC层和低信道数的层)分配给数字核,并将所有其他中间层分配给AiMC核。所设计系统的顶层概述及其亮点如图15.6.1所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信