An algorithm for finding nearest neighbours in constant average time with a linear space complexity

Q4 Computer Science
L. Micó, J. Oncina, E. Vidal
{"title":"An algorithm for finding nearest neighbours in constant average time with a linear space complexity","authors":"L. Micó, J. Oncina, E. Vidal","doi":"10.1109/ICPR.1992.201840","DOIUrl":null,"url":null,"abstract":"Given a set of n points or 'prototypes' and another point or 'test sample'. The authors present an algorithm that finds a prototype that is a nearest neighbour of the test sample, by computing only a constant number of distances on the average. This is achieved through a preprocessing procedure that computes only a number of distances and uses an amount of memory that grows lineally with n. The algorithm is an improvement of the previously introduced AESA algorithm and, as such, does not assume the data to be structured into a vector space, making only use of the metric properties of the given distance.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"4 1","pages":"557-560"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 32

Abstract

Given a set of n points or 'prototypes' and another point or 'test sample'. The authors present an algorithm that finds a prototype that is a nearest neighbour of the test sample, by computing only a constant number of distances on the average. This is achieved through a preprocessing procedure that computes only a number of distances and uses an amount of memory that grows lineally with n. The algorithm is an improvement of the previously introduced AESA algorithm and, as such, does not assume the data to be structured into a vector space, making only use of the metric properties of the given distance.<>
一种具有线性空间复杂度的在常数平均时间内寻找最近邻的算法
给定一组n个点或“原型”和另一个点或“测试样本”。作者提出了一种算法,该算法通过计算平均距离的常数个数来找到与测试样本最近的原型。这是通过一个预处理过程来实现的,该过程只计算一定数量的距离,并使用随n线性增长的内存量。该算法是对先前引入的AESA算法的改进,因此,不假设数据被构造成矢量空间,只使用给定距离的度量属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信