Saurabh Srivastava, P. J. Omar, Shiwanshu Shekhar, Sneha Gupta
{"title":"Study of acidic air pollutant (SO2 and NO2) tolerance of microalgae with sodium bicarbonate as growth stimulant","authors":"Saurabh Srivastava, P. J. Omar, Shiwanshu Shekhar, Sneha Gupta","doi":"10.2166/aqua.2023.013","DOIUrl":null,"url":null,"abstract":"\n The major environmental toxicity of acidic pollutant in the fossil fuel gas substances has long been well known. Macro and microalgae are biological sources with large range of biotechnological uses, for e.g., bioremediation, bio-fuel, air pollutant absorber, and many more. This study addressing the use of Chlamydomonas sp. an effective biomaterial in their tolerance against 2 and 5% of the SO2 & NO2. Improve their growth kinetics by the addition of sodium bicarbonate to the culture conical media. SO2 and NO2 were provided to culture media by the use of Sodium meta-bisulfite and Nitrous acid. The control combination of SO2 and NO2 is providing: 2% SO2, 5% SO2, 2% NO2, 5% NO2, (2% SO2 + 2% NO2), (5% SO2 + 5% NO2) at the seventh day of incubation. The optimum pH ranges in between 7.1 and 8.6 when the exposure of the gas. Results suggested that the growth kinetics of Chlamydomonas sp. is greater in SO2 and some low in the 5% exposure of NO2. The maximum absorbing concentration of SO2 and NO2 was 921.625 μg/ml and 906.25 μg/ml respectively for Chlamydomonas sp. This work highlighting the potential of algae in tolerance to NO2 & SO2 from the polluted air.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The major environmental toxicity of acidic pollutant in the fossil fuel gas substances has long been well known. Macro and microalgae are biological sources with large range of biotechnological uses, for e.g., bioremediation, bio-fuel, air pollutant absorber, and many more. This study addressing the use of Chlamydomonas sp. an effective biomaterial in their tolerance against 2 and 5% of the SO2 & NO2. Improve their growth kinetics by the addition of sodium bicarbonate to the culture conical media. SO2 and NO2 were provided to culture media by the use of Sodium meta-bisulfite and Nitrous acid. The control combination of SO2 and NO2 is providing: 2% SO2, 5% SO2, 2% NO2, 5% NO2, (2% SO2 + 2% NO2), (5% SO2 + 5% NO2) at the seventh day of incubation. The optimum pH ranges in between 7.1 and 8.6 when the exposure of the gas. Results suggested that the growth kinetics of Chlamydomonas sp. is greater in SO2 and some low in the 5% exposure of NO2. The maximum absorbing concentration of SO2 and NO2 was 921.625 μg/ml and 906.25 μg/ml respectively for Chlamydomonas sp. This work highlighting the potential of algae in tolerance to NO2 & SO2 from the polluted air.