A Note on “The Homotopy Category is a Homotopy Category”

IF 0.3 Q4 MATHEMATICS
Afework Solomon
{"title":"A Note on “The Homotopy Category is a Homotopy Category”","authors":"Afework Solomon","doi":"10.3844/JMSSP.2019.201.207","DOIUrl":null,"url":null,"abstract":"In his paper with the title, “The Homotopy Category is a Homotopy Category”, Arne Strom shows that the category Top of topo- logical spaces satisfies the axioms of an abstract homotopy category in the sense of Quillen. In this study, we show by examples that Quillen’s model structure on Top fails to capture some of the subtleties of classical homotopy theory and also, we show that the whole of classical homo-topy theory cannot be retrieved from the axiomatic approach of Quillen. Thus, we show that model category is an incomplete model of classical homotopy theory.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"11 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.201.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In his paper with the title, “The Homotopy Category is a Homotopy Category”, Arne Strom shows that the category Top of topo- logical spaces satisfies the axioms of an abstract homotopy category in the sense of Quillen. In this study, we show by examples that Quillen’s model structure on Top fails to capture some of the subtleties of classical homotopy theory and also, we show that the whole of classical homo-topy theory cannot be retrieved from the axiomatic approach of Quillen. Thus, we show that model category is an incomplete model of classical homotopy theory.
关于“同伦范畴是同伦范畴”的注记
Arne Strom在其题为“同伦范畴是一个同伦范畴”的论文中,证明了拓扑空间的范畴顶满足Quillen意义上的抽象同伦范畴公理。在本研究中,我们通过实例表明,Quillen在Top上的模型结构未能捕捉到经典同伦理论的一些微妙之处,并且我们也表明,不能从Quillen的公理化方法中检索到整个经典同伦理论。因此,我们证明了模型范畴是经典同伦理论的不完全模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信