Molecular signature and functional properties of human pluripotent stem cell-derived brain pericytes.

Ruslan Rust, Abhay P Sagare, Kassandra Kisler, Youbin Kim, Mingzi Zhang, Casey Griffin, Yaoming Wang, Veronica Clementel, Carina Torres-Sepulveda, Julia Tcw, Berislav V Zlokovic, Marcelo P Coba
{"title":"Molecular signature and functional properties of human pluripotent stem cell-derived brain pericytes.","authors":"Ruslan Rust, Abhay P Sagare, Kassandra Kisler, Youbin Kim, Mingzi Zhang, Casey Griffin, Yaoming Wang, Veronica Clementel, Carina Torres-Sepulveda, Julia Tcw, Berislav V Zlokovic, Marcelo P Coba","doi":"10.1101/2023.06.26.546577","DOIUrl":null,"url":null,"abstract":"<p><p>Brain pericytes maintain the blood-brain barrier (BBB), secrete neurotrophic factors and clear toxic proteins. Their loss in neurological disorders leads to BBB breakdown, neuronal dysfunction, and cognitive decline. Therefore, cell therapy to replace lost pericytes holds potential to restore impaired cerebrovascular and brain functions. However, the molecular composition and function of human iPSC-derived brain pericytes (iPSC-PC) remains poorly characterized. Here, we show by a quantitative analysis of 8,344 proteins and 20,572 phosphopeptides that iPSC-PC share 96% of total proteins and 98% of protein phosphorylation sites with primary human brain pericytes. This includes cell adhesion and tight junction proteins, transcription factors, and different protein kinase families of the human kinome. In pericyte-deficient mice, iPSC-PC home to host brain capillaries to form hybrid human-mouse microvessels with ligand-receptor associations. They repair BBB leaks and protect against neuron loss, which we show requires PDGRFB and pleiotrophin. They also clear Alzheimer's amyloid-β and tau neurotoxins via lipoprotein receptor. Thus, iPSC-PC may have potential as a replacement therapy for pericyte-deficient neurological disorders.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.26.546577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain pericytes maintain the blood-brain barrier (BBB), secrete neurotrophic factors and clear toxic proteins. Their loss in neurological disorders leads to BBB breakdown, neuronal dysfunction, and cognitive decline. Therefore, cell therapy to replace lost pericytes holds potential to restore impaired cerebrovascular and brain functions. However, the molecular composition and function of human iPSC-derived brain pericytes (iPSC-PC) remains poorly characterized. Here, we show by a quantitative analysis of 8,344 proteins and 20,572 phosphopeptides that iPSC-PC share 96% of total proteins and 98% of protein phosphorylation sites with primary human brain pericytes. This includes cell adhesion and tight junction proteins, transcription factors, and different protein kinase families of the human kinome. In pericyte-deficient mice, iPSC-PC home to host brain capillaries to form hybrid human-mouse microvessels with ligand-receptor associations. They repair BBB leaks and protect against neuron loss, which we show requires PDGRFB and pleiotrophin. They also clear Alzheimer's amyloid-β and tau neurotoxins via lipoprotein receptor. Thus, iPSC-PC may have potential as a replacement therapy for pericyte-deficient neurological disorders.

人多能干细胞衍生的脑周细胞的分子特征和功能特性。
脑周细胞维持血脑屏障(BBB),分泌神经营养因子和清除有毒蛋白。它们在神经系统疾病中的丧失会导致血脑屏障破裂、神经元功能障碍和认知能力下降。因此,细胞疗法替代丢失的周细胞具有恢复受损脑血管和脑功能的潜力。然而,人类ipsc来源的脑周细胞(iPSC-PC)的分子组成和功能仍然不清楚。通过对8,344种蛋白质和20,572种磷酸肽的定量分析,我们发现iPSC-PC与原代人脑周细胞共享96%的总蛋白质和98%的蛋白质磷酸化位点。这包括细胞粘附和紧密连接蛋白、转录因子和人类激酶的不同蛋白激酶家族。在周细胞缺陷小鼠中,iPSC-PC返回宿主脑毛细血管,形成具有配体-受体关联的杂交人-鼠微血管。它们修复血脑屏障泄漏并防止神经元丢失,我们发现这需要PDGRFB和多营养蛋白。它们还能通过脂蛋白受体清除阿尔茨海默病的淀粉样蛋白β和tau神经毒素。因此,iPSC-PC可能有潜力作为周细胞缺乏性神经疾病的替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信