Low Temperature Catalytic Cracking of Heavy Feedstock Optimized by Response Surface Method

Q4 Chemical Engineering
Sina Alizad, E. Moosavi, R. Karimzadeh
{"title":"Low Temperature Catalytic Cracking of Heavy Feedstock Optimized by Response Surface Method","authors":"Sina Alizad, E. Moosavi, R. Karimzadeh","doi":"10.22059/JCHPE.2019.280824.1277","DOIUrl":null,"url":null,"abstract":"Upgrading of cracked PFO (Pyrolysis fuel oil) for production of fuels, such as gasoline and light gasoil, was carried out in a semi batch reactor. Two different kinds of mesoporous and microporous catalysts, MCM-41 and ZSM-5, were used. Modification methods, such as ion exchange and impregnation with Fe and Ti, were done for tuning the acidity of the catalyst. XRD, FT-IR, and XRF analyzes were used to identify the structure and composition of the catalysts. Among the catalysts used in low temperature catalytic cracking of cracked PFO in a moderate temperature (380 °C), 3%Ti/H-MCM-41 showed the best catalytic performance. After choosing the best catalyst, an experimental design was carried out using response surface method with a five-level central composite design model. The effect of 3 main parameters, i.e. reaction temperature (360-400 °C), catalyst to feed ratio (0.04-0.1), and loading of Ti (0-5%) were investigated on liquid productivity and light olefin production. Design Expert software was used to maximize the sum of liquid yield and olefins in the gas. The best catalyst is 2.5%Ti/H-MCM-41. In optimum, 380 °C with the ratio of 0.1 g/g catalyst to feed over 2.5%Ti/H-MCM-41, the wt.% of liquid, gas, and solid products are 80 wt. %, 10 wt. %, and 10 wt. %, respectively. At this condition, 26 wt. % of liquid product was in the range of gasoline (C5-C10) and the rest (i.e. C11+) was considered in the range of light gas oil. Light olefins of the obtained gas products were about 2.74 wt. %.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"93 1","pages":"13-33"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2019.280824.1277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Upgrading of cracked PFO (Pyrolysis fuel oil) for production of fuels, such as gasoline and light gasoil, was carried out in a semi batch reactor. Two different kinds of mesoporous and microporous catalysts, MCM-41 and ZSM-5, were used. Modification methods, such as ion exchange and impregnation with Fe and Ti, were done for tuning the acidity of the catalyst. XRD, FT-IR, and XRF analyzes were used to identify the structure and composition of the catalysts. Among the catalysts used in low temperature catalytic cracking of cracked PFO in a moderate temperature (380 °C), 3%Ti/H-MCM-41 showed the best catalytic performance. After choosing the best catalyst, an experimental design was carried out using response surface method with a five-level central composite design model. The effect of 3 main parameters, i.e. reaction temperature (360-400 °C), catalyst to feed ratio (0.04-0.1), and loading of Ti (0-5%) were investigated on liquid productivity and light olefin production. Design Expert software was used to maximize the sum of liquid yield and olefins in the gas. The best catalyst is 2.5%Ti/H-MCM-41. In optimum, 380 °C with the ratio of 0.1 g/g catalyst to feed over 2.5%Ti/H-MCM-41, the wt.% of liquid, gas, and solid products are 80 wt. %, 10 wt. %, and 10 wt. %, respectively. At this condition, 26 wt. % of liquid product was in the range of gasoline (C5-C10) and the rest (i.e. C11+) was considered in the range of light gas oil. Light olefins of the obtained gas products were about 2.74 wt. %.
响应面法优化重质原料低温催化裂化
在半间歇反应器中对裂解后的PFO(裂解燃料油)进行了改造,用于生产汽油和轻柴油等燃料。采用两种不同的介孔和微孔催化剂MCM-41和ZSM-5。通过离子交换和Fe、Ti浸渍等改性方法,调整了催化剂的酸度。采用XRD、FT-IR和XRF分析对催化剂的结构和组成进行了表征。在中等温度(380℃)下用于裂解PFO低温催化裂化的催化剂中,3%Ti/H-MCM-41的催化性能最好。在选择了最佳催化剂后,采用响应面法和五层中心复合设计模型进行了实验设计。考察了反应温度(360 ~ 400℃)、催化剂进料比(0.04 ~ 0.1)和Ti用量(0 ~ 5%)3个主要参数对液体产率和轻质烯烃产率的影响。利用Design Expert软件实现了气液产率和烯烃总量的最大化。最佳催化剂为2.5%Ti/H-MCM-41。在最佳温度380℃,催化剂用量为0.1 g/g, ti /H-MCM-41浓度为2.5%时,液体、气体和固体产物的wt %分别为80 wt %、10 wt %和10 wt %。在这种条件下,26 wt. %的液体产品在汽油(C5-C10)的范围内,其余的(即C11+)被认为在轻质油的范围内。所得气产物的轻烯烃含量约为2.74 wt. %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信