{"title":"A Unified Framework for Multi-view Spectral Clustering","authors":"Guo Zhong, Chi-Man Pun","doi":"10.1109/ICDE48307.2020.00187","DOIUrl":null,"url":null,"abstract":"In the era of big data, multi-view clustering has drawn considerable attention in machine learning and data mining communities due to the existence of a large number of unlabeled multi-view data in reality. Traditional spectral graph theoretic methods have recently been extended to multi-view clustering and shown outstanding performance. However, most of them still consist of two separate stages: learning a fixed common real matrix (i.e., continuous labels) of all the views from original data, and then applying K-means to the resulting common label matrix to obtain the final clustering results. To address these, we design a unified multi-view spectral clustering scheme to learn the discrete cluster indicator matrix in one stage. Specifically, the proposed framework directly obtain clustering results without performing K-means clustering. Experimental results on several famous benchmark datasets verify the effectiveness and superiority of the proposed method compared to the state-of-the-arts.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"22 1","pages":"1854-1857"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In the era of big data, multi-view clustering has drawn considerable attention in machine learning and data mining communities due to the existence of a large number of unlabeled multi-view data in reality. Traditional spectral graph theoretic methods have recently been extended to multi-view clustering and shown outstanding performance. However, most of them still consist of two separate stages: learning a fixed common real matrix (i.e., continuous labels) of all the views from original data, and then applying K-means to the resulting common label matrix to obtain the final clustering results. To address these, we design a unified multi-view spectral clustering scheme to learn the discrete cluster indicator matrix in one stage. Specifically, the proposed framework directly obtain clustering results without performing K-means clustering. Experimental results on several famous benchmark datasets verify the effectiveness and superiority of the proposed method compared to the state-of-the-arts.