Star-Galaxy classification using machine learning algorithms and deep learning

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. Savyanavar, Nikhil C. Mhala, Shiv H. Sutar
{"title":"Star-Galaxy classification using machine learning algorithms and deep learning","authors":"A. Savyanavar, Nikhil C. Mhala, Shiv H. Sutar","doi":"10.59035/vvlr5284","DOIUrl":null,"url":null,"abstract":"Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high-resolution images, which can be analyzed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/vvlr5284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high-resolution images, which can be analyzed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.
使用机器学习算法和深度学习的恒星-星系分类
宇宙学是研究由恒星和星系组成的宇宙的学科。望远镜的进步使得捕捉高分辨率图像成为可能,这些图像可以使用机器学习(ML)算法进行分析。本文利用ML算法将恒星星系数据集分为恒星和星系两类,并比较了它们的分类性能。观察到,与其他ML分类器相比,随机森林提供了78%的更好准确率。为了进一步提高分类精度,我们提出了CNN(卷积神经网络)模型,准确率达到92.44%。由于CNN模型本身提取了特征,因此具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信