Midas: Generating mmWave Radar Data from Videos for Training Pervasive and Privacy-preserving Human Sensing Tasks

Kaikai Deng, Dong Zhao, Qiaoyue Han, Zihan Zhang, Shuyue Wang, Anfu Zhou, Huadong Ma
{"title":"Midas: Generating mmWave Radar Data from Videos for Training Pervasive and Privacy-preserving Human Sensing Tasks","authors":"Kaikai Deng, Dong Zhao, Qiaoyue Han, Zihan Zhang, Shuyue Wang, Anfu Zhou, Huadong Ma","doi":"10.1145/3580872","DOIUrl":null,"url":null,"abstract":"Millimeter wave radar is a promising sensing modality for enabling pervasive and privacy-preserving human sensing. However, the lack of large-scale radar datasets limits the potential of training deep learning models to achieve generalization and robustness. To close this gap, we resort to designing a software pipeline that leverages wealthy video repositories to generate synthetic radar data, but it confronts key challenges including i) multipath reflection and attenuation of radar signals among multiple humans, ii) unconvertible generated data leading to poor generality for various applications, and iii) the class-imbalance issue of videos leading to low model stability. To this end, we design Midas to generate realistic, convertible radar data from videos via two components: (i) a data generation network ( DG-Net ) combines several key modules, depth prediction , human mesh fitting and multi-human reflection model , to simulate the multipath reflection and attenuation of radar signals to output convertible coarse radar data, followed by a Transformer model to generate realistic radar data; (ii) a variant Siamese network ( VS-Net ) selects key video clips to eliminate data redundancy for addressing the class-imbalance issue. We implement and evaluate Midas with video data from various external data sources and real-world radar data, demonstrating its great advantages over the state-of-the-art approach for both activity recognition and object detection tasks. CCS Concepts: • Human-centered computing → Human computer interaction (HCI) ; • Computer systems organiza-tion → Architectures .","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"32 1","pages":"9:1-9:26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Millimeter wave radar is a promising sensing modality for enabling pervasive and privacy-preserving human sensing. However, the lack of large-scale radar datasets limits the potential of training deep learning models to achieve generalization and robustness. To close this gap, we resort to designing a software pipeline that leverages wealthy video repositories to generate synthetic radar data, but it confronts key challenges including i) multipath reflection and attenuation of radar signals among multiple humans, ii) unconvertible generated data leading to poor generality for various applications, and iii) the class-imbalance issue of videos leading to low model stability. To this end, we design Midas to generate realistic, convertible radar data from videos via two components: (i) a data generation network ( DG-Net ) combines several key modules, depth prediction , human mesh fitting and multi-human reflection model , to simulate the multipath reflection and attenuation of radar signals to output convertible coarse radar data, followed by a Transformer model to generate realistic radar data; (ii) a variant Siamese network ( VS-Net ) selects key video clips to eliminate data redundancy for addressing the class-imbalance issue. We implement and evaluate Midas with video data from various external data sources and real-world radar data, demonstrating its great advantages over the state-of-the-art approach for both activity recognition and object detection tasks. CCS Concepts: • Human-centered computing → Human computer interaction (HCI) ; • Computer systems organiza-tion → Architectures .
迈达斯:从视频中生成毫米波雷达数据,用于训练普遍和保护隐私的人类感知任务
毫米波雷达是一种很有前途的传感方式,可以实现普遍和保护隐私的人体传感。然而,大规模雷达数据集的缺乏限制了训练深度学习模型实现泛化和鲁棒性的潜力。为了缩小这一差距,我们设计了一个软件管道,利用丰富的视频存储库来生成合成雷达数据,但它面临的关键挑战包括i)多人之间雷达信号的多径反射和衰减,ii)不可转换的生成数据导致各种应用的通用性差,以及iii)视频的类别不平衡问题导致模型稳定性低。为此,我们设计了Midas,通过两个组件从视频中生成逼真的可转换雷达数据:(i)数据生成网络(DG-Net)结合了几个关键模块,深度预测,人网格拟合和多人反射模型,模拟雷达信号的多径反射和衰减,输出可转换的粗雷达数据,然后是Transformer模型生成逼真的雷达数据;(ii)一个变种的Siamese网络(VS-Net)选择关键的视频片段来消除数据冗余,以解决类别不平衡问题。我们使用来自各种外部数据源和真实雷达数据的视频数据来实施和评估Midas,展示了其在活动识别和目标检测任务方面的巨大优势。CCS概念:•以人为中心的计算→人机交互(HCI);计算机系统组织→体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信