Eesti lastekeele korpuse morfoloogilise märgendamise kitsaskohtadest

Q2 Arts and Humanities
Kristiina Vaik, Virve Vihman
{"title":"Eesti lastekeele korpuse morfoloogilise märgendamise kitsaskohtadest","authors":"Kristiina Vaik, Virve Vihman","doi":"10.5128/ERYA13.13","DOIUrl":null,"url":null,"abstract":"Artikli eesmark on anda ulevaade sellest, mis raskendab avalikult kattesaadava eesti lastekeele korpuse automaatset morfoloogilist margendamist ning anda soovitusi, kuidas tulevaste korpuste margendamist ja standardiseerimist analuusi tarbeks paremaks muuta. Analuusisime korpust kirjakeelele moeldud morfoloogiaanalusaatori abil. Automaatse analuusi jarel vaatasime, kui suur osa sonadest sai analuusi voi jai analusaatorile tundmatuks nii alamkorpuste kui lapse- ja hoidjakeele loikes. Selgus, et analuusi saanud sonade osakaal igas alamkorpuses varieerus hoidjakeeles 94–98% ja lastekeeles 57–96% vahel. Suurt rolli mangib lindistuste uleskirjutamisviis: hoidjakeelt kirjutatakse ules kirjakeelele sarnaselt, kuid lastekeeles lahtutakse kuuldeortograafiast. Koik alamkorpused kull jargivad CHILDES-i transkriptsioonisusteemi ettekirjutusi, ent iga alamkorpus on koostatud erinevaid eesmarke silmas pidades ja on erineva transkribeerimisstiiliga, millest jarjepidevalt kinni ei peeta. Margenduse tulemust hindasime kasitsi labivaatamise teel. Artiklis toome valja, millised olid nii tundmatuks jaanud kui vale analuusi saanud sonade sagedasemad probleemid ja pakume voimalikke lahendusi. \"Issues in morphological annotation of the Estonian child language corpus\" This article presents the results of an initial attempt to automatically annotate the currently existing, publicly available Estonian child language corpus morphologically. CLAN software is not suitable for morphological analysis of Estonian, but Estonian language technology resources are available for written language and can be adapted to spoken language and specific genres. The automatic parser provided annotation for 92–98% of words in the child-directed speech and 57–96% of the child speech, with the results for child speech varying across corpora. A manual analysis was also conducted of words which were automatically annotated in a random selection of transcriptions from each corpus. Across corpora, 63–96% of annotated words were correctly annotated. Reasons for the variation are discussed, and obstacles to automatic annotation are identified at various levels. First, the corpora have been collected and transcribed with various goals and according to differing principles, hence the style and detail of transcription vary greatly across the corpora. Second, even within a single corpus, discrepancies appear in coding which need to be uniformly resolved in order to ensure accurate morphological annotation. Finally, for flagging non-standard or idiosyncratic forms, the implementation of metacodes available for use in the child language corpora would greatly assist the task of automatic morphological parsing. For each corpus, a user dictionary adapted to the particular genre and the particular corpus would need to be developed, including proper names and idiosyncratic words. The marking of errors is a crucial area which needs to be standardised in order to enable automatic annotation. Additionally, five groups of words which received inaccurate annotation were identified, and suggestions are made for transcription of child language corpora in order to ease the task of morphological annotation in the future.","PeriodicalId":35118,"journal":{"name":"Eesti Rakenduslingvistika Uhingu Aastaraamat","volume":"9 1","pages":"205-221"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eesti Rakenduslingvistika Uhingu Aastaraamat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5128/ERYA13.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

Abstract

Artikli eesmark on anda ulevaade sellest, mis raskendab avalikult kattesaadava eesti lastekeele korpuse automaatset morfoloogilist margendamist ning anda soovitusi, kuidas tulevaste korpuste margendamist ja standardiseerimist analuusi tarbeks paremaks muuta. Analuusisime korpust kirjakeelele moeldud morfoloogiaanalusaatori abil. Automaatse analuusi jarel vaatasime, kui suur osa sonadest sai analuusi voi jai analusaatorile tundmatuks nii alamkorpuste kui lapse- ja hoidjakeele loikes. Selgus, et analuusi saanud sonade osakaal igas alamkorpuses varieerus hoidjakeeles 94–98% ja lastekeeles 57–96% vahel. Suurt rolli mangib lindistuste uleskirjutamisviis: hoidjakeelt kirjutatakse ules kirjakeelele sarnaselt, kuid lastekeeles lahtutakse kuuldeortograafiast. Koik alamkorpused kull jargivad CHILDES-i transkriptsioonisusteemi ettekirjutusi, ent iga alamkorpus on koostatud erinevaid eesmarke silmas pidades ja on erineva transkribeerimisstiiliga, millest jarjepidevalt kinni ei peeta. Margenduse tulemust hindasime kasitsi labivaatamise teel. Artiklis toome valja, millised olid nii tundmatuks jaanud kui vale analuusi saanud sonade sagedasemad probleemid ja pakume voimalikke lahendusi. "Issues in morphological annotation of the Estonian child language corpus" This article presents the results of an initial attempt to automatically annotate the currently existing, publicly available Estonian child language corpus morphologically. CLAN software is not suitable for morphological analysis of Estonian, but Estonian language technology resources are available for written language and can be adapted to spoken language and specific genres. The automatic parser provided annotation for 92–98% of words in the child-directed speech and 57–96% of the child speech, with the results for child speech varying across corpora. A manual analysis was also conducted of words which were automatically annotated in a random selection of transcriptions from each corpus. Across corpora, 63–96% of annotated words were correctly annotated. Reasons for the variation are discussed, and obstacles to automatic annotation are identified at various levels. First, the corpora have been collected and transcribed with various goals and according to differing principles, hence the style and detail of transcription vary greatly across the corpora. Second, even within a single corpus, discrepancies appear in coding which need to be uniformly resolved in order to ensure accurate morphological annotation. Finally, for flagging non-standard or idiosyncratic forms, the implementation of metacodes available for use in the child language corpora would greatly assist the task of automatic morphological parsing. For each corpus, a user dictionary adapted to the particular genre and the particular corpus would need to be developed, including proper names and idiosyncratic words. The marking of errors is a crucial area which needs to be standardised in order to enable automatic annotation. Additionally, five groups of words which received inaccurate annotation were identified, and suggestions are made for transcription of child language corpora in order to ease the task of morphological annotation in the future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eesti Rakenduslingvistika Uhingu Aastaraamat
Eesti Rakenduslingvistika Uhingu Aastaraamat Arts and Humanities-Language and Linguistics
CiteScore
0.90
自引率
0.00%
发文量
19
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信