A Classification Framework of Identifying Major Documents With Search Engine Suggestions and Unsupervised Subtopic Clustering

Pub Date : 2021-10-01 DOI:10.4018/IJCINI.20211001.OA42
Chen Zhao, T. Utsuro, Yasuhide Kawada
{"title":"A Classification Framework of Identifying Major Documents With Search Engine Suggestions and Unsupervised Subtopic Clustering","authors":"Chen Zhao, T. Utsuro, Yasuhide Kawada","doi":"10.4018/IJCINI.20211001.OA42","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20211001.OA42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.
分享
查看原文
基于搜索引擎建议和无监督子主题聚类的主要文档识别分类框架
本文解决了从一组类似的文档中自动识别出偏离主题的文档的问题,这些文档被认为是关于某个共同主题的。目标是从集合中去除噪声文件。针对非主题文档的发现问题,提出了一个基于主题模型的分类框架。本文引入了注释{\it搜索引擎建议}的新概念,其中本文采用用于搜索页面的任何搜索查询作为该页内容的表示。本文采用词嵌入的方法对词和文档进行分布式表示,并对搜索引擎建议进行相似度比较。研究表明,搜索引擎建议可以是文本内容的高度精确的语义表示,并证明我们的文档分析算法使用这种表示进行相关性度量,与主题概率排序的基线技术相比,在主题内容过滤方面具有令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信