{"title":"Robust Material Graphs for Volume Rendering","authors":"Ojaswa Sharma, Tushar Arora, Apoorv Khattar","doi":"10.2312/PG.20181282","DOIUrl":null,"url":null,"abstract":"A good transfer function in volume rendering requires careful consideration of the materials present in a volume. In this work we propose a graph based method that considerably reduces manual effort required in designing a transfer function and provides an easy interface for interaction with the volume. Our novel contribution is in proposing an algorithm for robust deduction of a material graph from a set of disconnected edges. Since we compute material topology of the objects, an enhanced rendering is possible with our method. This also allows us to selectively render objects and depict adjacent materials in a volume. CCS Concepts •Computing methodologies → Machine learning approaches; Rendering; Image segmentation; Volumetric models;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"10 1","pages":"65-68"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A good transfer function in volume rendering requires careful consideration of the materials present in a volume. In this work we propose a graph based method that considerably reduces manual effort required in designing a transfer function and provides an easy interface for interaction with the volume. Our novel contribution is in proposing an algorithm for robust deduction of a material graph from a set of disconnected edges. Since we compute material topology of the objects, an enhanced rendering is possible with our method. This also allows us to selectively render objects and depict adjacent materials in a volume. CCS Concepts •Computing methodologies → Machine learning approaches; Rendering; Image segmentation; Volumetric models;