What Can We Learn from Small Data

Pub Date : 2023-01-01 DOI:10.36244/icj.2023.5.5
Tamás Nyíri, Attila Kiss
{"title":"What Can We Learn from Small Data","authors":"Tamás Nyíri, Attila Kiss","doi":"10.36244/icj.2023.5.5","DOIUrl":null,"url":null,"abstract":"Over the past decade, deep learning has profoundly transformed the landscape of science and technology, from refining advertising algorithms to pioneering self-driving vehicles. While advancements in computational capabilities have fueled this evolution, the consistent availability of high quality training data is less of a given. In this work, the authors aim to provide a bird’s eye view on topics pertaining to small data scenarios, that is scenarios in which a less than desirable quality and quantity of data is given for supervised learning. We provide an overview for a set of challenges, proposed solution and at the end tie it together by practical guidelines on which techniques are useful in specific real-world scenarios.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.5.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, deep learning has profoundly transformed the landscape of science and technology, from refining advertising algorithms to pioneering self-driving vehicles. While advancements in computational capabilities have fueled this evolution, the consistent availability of high quality training data is less of a given. In this work, the authors aim to provide a bird’s eye view on topics pertaining to small data scenarios, that is scenarios in which a less than desirable quality and quantity of data is given for supervised learning. We provide an overview for a set of challenges, proposed solution and at the end tie it together by practical guidelines on which techniques are useful in specific real-world scenarios.
分享
查看原文
我们能从小数据中学到什么
在过去的十年里,深度学习深刻地改变了科学和技术的格局,从改进广告算法到开创性的自动驾驶汽车。虽然计算能力的进步推动了这种演变,但高质量训练数据的一致可用性却不太可能。在这项工作中,作者的目标是提供与小数据场景有关的主题的鸟瞰图,小数据场景是为监督学习提供的数据质量和数量不理想的场景。我们提供了一组挑战的概述,建议的解决方案,并在最后通过实用指南将其联系在一起,指导哪些技术在特定的现实场景中有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信