Learning articulated body models for people re-identification

Davide Baltieri, R. Vezzani, R. Cucchiara
{"title":"Learning articulated body models for people re-identification","authors":"Davide Baltieri, R. Vezzani, R. Cucchiara","doi":"10.1145/2502081.2502147","DOIUrl":null,"url":null,"abstract":"People re-identification is a challenging problem in surveillance and forensics and it aims at associating multiple instances of the same person which have been acquired from different points of view and after a temporal gap. Image-based appearance features are usually adopted but, in addition to their intrinsically low discriminability, they are subject to perspective and view-point issues. We propose to completely change the approach by mapping local descriptors extracted from RGB-D sensors on a 3D body model for creating a view-independent signature. An original bone-wise color descriptor is generated and reduced with PCA to compute the person signature. The virtual bone set used to map appearance features is learned using a recursive splitting approach. Finally, people matching for re-identification is performed using the Relaxed Pairwise Metric Learning, which simultaneously provides feature reduction and weighting. Experiments on a specific dataset created with the Microsoft Kinect sensor and the OpenNi libraries prove the advantages of the proposed technique with respect to state of the art methods based on 2D or non-articulated 3D body models.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

People re-identification is a challenging problem in surveillance and forensics and it aims at associating multiple instances of the same person which have been acquired from different points of view and after a temporal gap. Image-based appearance features are usually adopted but, in addition to their intrinsically low discriminability, they are subject to perspective and view-point issues. We propose to completely change the approach by mapping local descriptors extracted from RGB-D sensors on a 3D body model for creating a view-independent signature. An original bone-wise color descriptor is generated and reduced with PCA to compute the person signature. The virtual bone set used to map appearance features is learned using a recursive splitting approach. Finally, people matching for re-identification is performed using the Relaxed Pairwise Metric Learning, which simultaneously provides feature reduction and weighting. Experiments on a specific dataset created with the Microsoft Kinect sensor and the OpenNi libraries prove the advantages of the proposed technique with respect to state of the art methods based on 2D or non-articulated 3D body models.
学习铰接式人体模型,重新识别人
人的再识别是监视和取证中的一个具有挑战性的问题,它旨在将从不同角度获得的同一个人的多个实例联系起来,并经过一段时间的间隔。通常采用基于图像的外观特征,但除了其本质上的低可辨别性外,它们还受到视角和视点问题的影响。我们建议将从RGB-D传感器提取的局部描述符映射到3D身体模型上,以创建与视图无关的签名,从而彻底改变这种方法。生成原始的骨骼颜色描述符,并使用PCA进行约简以计算人物签名。使用递归分割方法学习用于映射外观特征的虚拟骨集。最后,使用同时提供特征约简和加权的放松成对度量学习进行重新识别的人员匹配。在使用微软Kinect传感器和OpenNi库创建的特定数据集上的实验证明了所提出的技术相对于基于2D或非铰接3D身体模型的最先进方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信