Towards Simple and Efficient Task-Adaptive Pre-training for Text Classification

Q3 Environmental Science
Arnav Ladkat, Aamir Miyajiwala, Samiksha Jagadale, Rekha Kulkarni, Raviraj Joshi
{"title":"Towards Simple and Efficient Task-Adaptive Pre-training for Text Classification","authors":"Arnav Ladkat, Aamir Miyajiwala, Samiksha Jagadale, Rekha Kulkarni, Raviraj Joshi","doi":"10.48550/arXiv.2209.12943","DOIUrl":null,"url":null,"abstract":"Language models are pre-trained using large corpora of generic data like book corpus, com- mon crawl and Wikipedia, which is essential for the model to understand the linguistic characteristics of the language. New studies suggest using Domain Adaptive Pre-training (DAPT) and Task-Adaptive Pre-training (TAPT) as an intermediate step before the final finetuning task. This step helps cover the target domain vocabulary and improves the model performance on the downstream task. In this work, we study the impact of training only the embedding layer on the model’s performance during TAPT and task-specific finetuning. Based on our study, we propose a simple approach to make the in- termediate step of TAPT for BERT-based mod- els more efficient by performing selective pre-training of BERT layers. We show that training only the BERT embedding layer during TAPT is sufficient to adapt to the vocabulary of the target domain and achieve comparable performance. Our approach is computationally efficient, with 78% fewer parameters trained during TAPT. The proposed embedding layer finetuning approach can also be an efficient domain adaptation technique.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"43 1","pages":"320-325"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

Abstract

Language models are pre-trained using large corpora of generic data like book corpus, com- mon crawl and Wikipedia, which is essential for the model to understand the linguistic characteristics of the language. New studies suggest using Domain Adaptive Pre-training (DAPT) and Task-Adaptive Pre-training (TAPT) as an intermediate step before the final finetuning task. This step helps cover the target domain vocabulary and improves the model performance on the downstream task. In this work, we study the impact of training only the embedding layer on the model’s performance during TAPT and task-specific finetuning. Based on our study, we propose a simple approach to make the in- termediate step of TAPT for BERT-based mod- els more efficient by performing selective pre-training of BERT layers. We show that training only the BERT embedding layer during TAPT is sufficient to adapt to the vocabulary of the target domain and achieve comparable performance. Our approach is computationally efficient, with 78% fewer parameters trained during TAPT. The proposed embedding layer finetuning approach can also be an efficient domain adaptation technique.
面向简单高效的任务自适应文本分类预训练
语言模型使用大量的通用数据(如图书语料库、common crawl和维基百科)进行预训练,这对于模型理解语言的语言特征至关重要。新的研究建议在最终调优任务之前使用域自适应预训练(DAPT)和任务自适应预训练(TAPT)作为中间步骤。这一步有助于覆盖目标领域词汇表,并提高下游任务的模型性能。在这项工作中,我们研究了在TAPT和特定任务微调期间只训练嵌入层对模型性能的影响。基于我们的研究,我们提出了一种简单的方法,通过对BERT层进行选择性预训练,使基于BERT的模型的中间步骤更有效。研究表明,在TAPT过程中只训练BERT嵌入层就足以适应目标领域的词汇表,并达到相当的性能。我们的方法计算效率很高,在TAPT期间训练的参数减少了78%。所提出的嵌入层微调方法也是一种有效的领域自适应技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信