Image indexing and retrieval using visual keyword histograms

Joo-Hwee Lim, Jesse S. Jin
{"title":"Image indexing and retrieval using visual keyword histograms","authors":"Joo-Hwee Lim, Jesse S. Jin","doi":"10.1109/ICME.2002.1035756","DOIUrl":null,"url":null,"abstract":"We propose a novel image representation called visual keyword histogram (VKH) for content-based indexing and retrieval. Visual keywords are domain-relevant visual prototypes (e.g. faces, foliage, buildings etc) with both perceptual appearance and textual semantics. Collectively, VKHs axe computed over spatial tessellation to represent the distribution of visual keywords in various parts of an image. To construct a vocabulary of visual keywords, an incremental neural network is deployed to learn visual keywords from examples. This allows us to build domain-specific visual vocabularies rapidly and incrementally. Last but not least, we propose a new visual query language called Query by Spatial Icons (QBSI) that allows a user to specify a query in terms of \"what\" and \"where\". A visual query term constrains whether a visual keyword should be present and a query formals chains these terms into a disjunctive normal form via logical operators. We show our approach on real and complex home photos with very promising results.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"35 1","pages":"213-216 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel image representation called visual keyword histogram (VKH) for content-based indexing and retrieval. Visual keywords are domain-relevant visual prototypes (e.g. faces, foliage, buildings etc) with both perceptual appearance and textual semantics. Collectively, VKHs axe computed over spatial tessellation to represent the distribution of visual keywords in various parts of an image. To construct a vocabulary of visual keywords, an incremental neural network is deployed to learn visual keywords from examples. This allows us to build domain-specific visual vocabularies rapidly and incrementally. Last but not least, we propose a new visual query language called Query by Spatial Icons (QBSI) that allows a user to specify a query in terms of "what" and "where". A visual query term constrains whether a visual keyword should be present and a query formals chains these terms into a disjunctive normal form via logical operators. We show our approach on real and complex home photos with very promising results.
使用视觉关键字直方图的图像索引和检索
我们提出了一种新的图像表示,称为视觉关键字直方图(VKH),用于基于内容的索引和检索。视觉关键词是与领域相关的视觉原型(如面孔、树叶、建筑等),具有感知外观和文本语义。总的来说,vkh是通过空间镶嵌来计算的,以表示视觉关键字在图像各个部分的分布。为了构建视觉关键词词汇表,采用增量神经网络从实例中学习视觉关键词。这使我们能够快速和增量地构建特定于领域的可视化词汇表。最后但并非最不重要的是,我们提出了一种新的可视化查询语言,称为空间图标查询(QBSI),它允许用户根据“什么”和“哪里”指定查询。可视化查询词约束是否应该出现可视化关键字,查询通过逻辑运算符将这些词链成析取的标准形式。我们在真实和复杂的家庭照片上展示了我们的方法,结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信