A High Granularity Approach to NetworkPacket Processing for Latency-TolerantApplications with CUDA (Corvyd)

IF 0.1
Maria Pantoja
{"title":"A High Granularity Approach to NetworkPacket Processing for Latency-TolerantApplications with CUDA (Corvyd)","authors":"Maria Pantoja","doi":"10.18272/aci.v13i2.2142","DOIUrl":null,"url":null,"abstract":"Currently, practical network packet processing used for In-trusion Detection Systems/Intrusion Prevention Systems (IDS/IPS) tendto belong to one of two disjoint categories: software-only implementa-tions running on general-purpose CPUs, or highly specialized networkhardware implementations using ASICs or FPGAs for the most commonfunctions, general-purpose CPUs for the rest. These approaches cover tryto maximize the performance and minimize the cost, but neither system,when implemented effectively, is affordable to any clients except for thoseat the well-funded enterprise level. In this paper, we aim to improve theperformance of affordable network packet processing in heterogeneoussystems with consumer Graphics Processing Units (GPUs) hardware byoptimizing latency-tolerant packet processing operations, notably IDS,to obtain maximum throughput required by such systems in networkssophisticated enough to demand a dedicated IDS/IPS system, but notenough to justify the high cost of cutting-edge specialized hardware. Inparticular, this project investigated increasing the granularity of OSIlayer-based packet batching over that of previous batching approaches.We demonstrate that highly granular GPU-enabled packet processing isgenerally impractical, compared with existing methods, by implementingour own solution that we call Corvyd, a heterogeneous real-time packetprocessing engine.","PeriodicalId":42541,"journal":{"name":"Avances en Ciencias e Ingenieria","volume":"8 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avances en Ciencias e Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18272/aci.v13i2.2142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, practical network packet processing used for In-trusion Detection Systems/Intrusion Prevention Systems (IDS/IPS) tendto belong to one of two disjoint categories: software-only implementa-tions running on general-purpose CPUs, or highly specialized networkhardware implementations using ASICs or FPGAs for the most commonfunctions, general-purpose CPUs for the rest. These approaches cover tryto maximize the performance and minimize the cost, but neither system,when implemented effectively, is affordable to any clients except for thoseat the well-funded enterprise level. In this paper, we aim to improve theperformance of affordable network packet processing in heterogeneoussystems with consumer Graphics Processing Units (GPUs) hardware byoptimizing latency-tolerant packet processing operations, notably IDS,to obtain maximum throughput required by such systems in networkssophisticated enough to demand a dedicated IDS/IPS system, but notenough to justify the high cost of cutting-edge specialized hardware. Inparticular, this project investigated increasing the granularity of OSIlayer-based packet batching over that of previous batching approaches.We demonstrate that highly granular GPU-enabled packet processing isgenerally impractical, compared with existing methods, by implementingour own solution that we call Corvyd, a heterogeneous real-time packetprocessing engine.
基于CUDA的高粒度网络数据包处理方法(Corvyd)
目前,用于入侵检测系统/入侵防御系统(IDS/IPS)的实际网络数据包处理往往属于两个互不相关的类别之一:在通用cpu上运行的纯软件实现,或高度专业化的网络硬件实现,使用asic或fpga实现最常见的功能,其余部分用于通用cpu。这些方法包括尝试最大化性能和最小化成本,但是这两个系统在有效实现时,除了那些资金充足的企业级别的客户之外,任何客户都负担不起。在本文中,我们的目标是通过优化可容忍延迟的数据包处理操作,特别是IDS,来提高具有消费类图形处理单元(gpu)硬件的异构系统中负担得起的网络数据包处理的性能,以获得此类系统在复杂到需要专用IDS/IPS系统的网络中所需的最大吞吐量,但不足以证明尖端专用硬件的高成本是合理的。特别地,这个项目研究了在以前的批处理方法之上增加基于osi层的数据包批处理的粒度。通过实现我们自己的解决方案,我们证明了与现有方法相比,高粒度gpu支持的数据包处理通常是不切实际的,我们称之为corvy,一个异构实时数据包处理引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Avances en Ciencias e Ingenieria
Avances en Ciencias e Ingenieria ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
16
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信