OptImatch: Semantic web system for query problem determination

Guilherme Damasio, Piotr Mierzejewski, Jaroslaw Szlichta, C. Zuzarte
{"title":"OptImatch: Semantic web system for query problem determination","authors":"Guilherme Damasio, Piotr Mierzejewski, Jaroslaw Szlichta, C. Zuzarte","doi":"10.1109/ICDE.2016.7498338","DOIUrl":null,"url":null,"abstract":"Query performance problem determination is usually performed by analyzing query execution plans (QEPs). Analyzing complex QEPs is excessively time consuming and existing automatic problem determination tools do not provide ability to perform analysis with flexible user-defined problem patterns. We present the novel OptImatch system that allows a relatively naive user to search for patterns in QEPs and get recommendations from an expert and user customizable knowledge base. Our system transforms a QEP into an RDF graph. We provide a web graphical interface for the user to describe a pattern that is transformed with handlers into a SPARQL query. The SPARQL query is matched against the abstracted RDF graph and any matched parts of the graph are relayed back to the user. With the knowledge base the system automatically matches stored patterns to the QEPs by adapting dynamic context through developed tagging language and ranks recommendations using statistical correlation analysis.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"15 1","pages":"1334-1337"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Query performance problem determination is usually performed by analyzing query execution plans (QEPs). Analyzing complex QEPs is excessively time consuming and existing automatic problem determination tools do not provide ability to perform analysis with flexible user-defined problem patterns. We present the novel OptImatch system that allows a relatively naive user to search for patterns in QEPs and get recommendations from an expert and user customizable knowledge base. Our system transforms a QEP into an RDF graph. We provide a web graphical interface for the user to describe a pattern that is transformed with handlers into a SPARQL query. The SPARQL query is matched against the abstracted RDF graph and any matched parts of the graph are relayed back to the user. With the knowledge base the system automatically matches stored patterns to the QEPs by adapting dynamic context through developed tagging language and ranks recommendations using statistical correlation analysis.
OptImatch:用于查询问题确定的语义web系统
查询性能问题的确定通常通过分析查询执行计划(qep)来完成。分析复杂的qep非常耗时,而且现有的自动问题确定工具不提供使用灵活的用户定义问题模式执行分析的能力。我们提出了一种新颖的OptImatch系统,它允许一个相对幼稚的用户在qep中搜索模式,并从专家和用户可定制的知识库中获得建议。我们的系统将QEP转换为RDF图。我们为用户提供了一个web图形界面来描述一个模式,该模式通过处理程序转换为SPARQL查询。SPARQL查询与抽象的RDF图匹配,图中任何匹配的部分都被转发给用户。在知识库的基础上,系统通过开发的标记语言适应动态上下文,自动将存储的模式与qep进行匹配,并使用统计相关性分析对推荐进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信