{"title":"PHENIX results on three-particle Bose-Einstein correlations in $\\sqrt{S_{NN}} = 200$ GeV Au+Au collisions","authors":"T. Novak","doi":"10.3390/UNIVERSE4030057","DOIUrl":null,"url":null,"abstract":"Bose-Einstein correlations of identical hadrons reveal information about hadron creation from the strongly interacting matter formed in ultrarelativistic heavy ion collisions. The measurement of three-particle correlations may in particular shed light on hadron creation mechanisms beyond thermal/chaotic emission. In this paper we show the status of PHENIX measurements of three pion correlations as a function of momentum differences within the triplets. We analyze the shape of the correlation functions through the assumption of L\\'evy sources and a proper treatment of the Coulomb interaction within the triplets. We measure the three-particle correlation strength ($\\lambda_3$), which, together with the two-particle correlation strength $\\lambda_2$, encodes information about hadron creation mechanisms. From a consistent analysis of two- and three-particle correlation strength we establish a new experimental measure of thermalization and coherence in the source.","PeriodicalId":8464,"journal":{"name":"arXiv: Nuclear Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/UNIVERSE4030057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Bose-Einstein correlations of identical hadrons reveal information about hadron creation from the strongly interacting matter formed in ultrarelativistic heavy ion collisions. The measurement of three-particle correlations may in particular shed light on hadron creation mechanisms beyond thermal/chaotic emission. In this paper we show the status of PHENIX measurements of three pion correlations as a function of momentum differences within the triplets. We analyze the shape of the correlation functions through the assumption of L\'evy sources and a proper treatment of the Coulomb interaction within the triplets. We measure the three-particle correlation strength ($\lambda_3$), which, together with the two-particle correlation strength $\lambda_2$, encodes information about hadron creation mechanisms. From a consistent analysis of two- and three-particle correlation strength we establish a new experimental measure of thermalization and coherence in the source.