Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading

Q3 Engineering
F. Aneke, Shadi Hanandeh, D. Kalumba
{"title":"Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading","authors":"F. Aneke, Shadi Hanandeh, D. Kalumba","doi":"10.28991/cej-2023-09-08-015","DOIUrl":null,"url":null,"abstract":"This study is focused on evaluating the factors affecting the performance of fiber-reinforced subgrade under cyclic loading. To achieve the objectives of this study, a series of dynamic triaxial (DT) tests was performed, and the following parameters, such as resilient modulus (MR), number of loading cycles (N), cyclic stress (CS), resilient strain (RS), and stress-strain hysteresis response of both the reinforced and unreinforced subgrades were evaluated. Subsequently, a series of scanning electron microscope (SEM) tests was conducted to track the fiber-soil interfacial bonding after the completion of DT test. The results indicated that N and CS triggered an appreciable decrease in MR with significantly high RS deformation for the unreinforced subgrade. However, reversed responses were noted upon the inclusion of sisal fiber due to fiber-soil adhesion and a high ductility response was portrayed by the reinforced subgrades. A reversed response was significant upon 0.25% and 0.5% fiber inclusion, beyond which the CS resistance slightly decreased. The stress-strain hysteresis loop was observed to increase as the axial strain increased proportionally with an increase in fiber contents, thus causing a significant increase in energy absorption in specimens. The SEM micrograph showed tightly knitted fiber-soil adhesion after the DT test. This study indicated that the reinforced subgrade sustained the CS, N, and improved energy absorption capacity, and MRupon fiber inclusion. Doi: 10.28991/CEJ-2023-09-08-015 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-08-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This study is focused on evaluating the factors affecting the performance of fiber-reinforced subgrade under cyclic loading. To achieve the objectives of this study, a series of dynamic triaxial (DT) tests was performed, and the following parameters, such as resilient modulus (MR), number of loading cycles (N), cyclic stress (CS), resilient strain (RS), and stress-strain hysteresis response of both the reinforced and unreinforced subgrades were evaluated. Subsequently, a series of scanning electron microscope (SEM) tests was conducted to track the fiber-soil interfacial bonding after the completion of DT test. The results indicated that N and CS triggered an appreciable decrease in MR with significantly high RS deformation for the unreinforced subgrade. However, reversed responses were noted upon the inclusion of sisal fiber due to fiber-soil adhesion and a high ductility response was portrayed by the reinforced subgrades. A reversed response was significant upon 0.25% and 0.5% fiber inclusion, beyond which the CS resistance slightly decreased. The stress-strain hysteresis loop was observed to increase as the axial strain increased proportionally with an increase in fiber contents, thus causing a significant increase in energy absorption in specimens. The SEM micrograph showed tightly knitted fiber-soil adhesion after the DT test. This study indicated that the reinforced subgrade sustained the CS, N, and improved energy absorption capacity, and MRupon fiber inclusion. Doi: 10.28991/CEJ-2023-09-08-015 Full Text: PDF
循环荷载作用下纤维加筋路基土特性影响因素评价
研究了循环荷载作用下纤维增强路基性能的影响因素。为了实现本研究的目标,进行了一系列动态三轴(DT)试验,并对加筋和未加筋路基的弹性模量(MR)、加载循环次数(N)、循环应力(CS)、弹性应变(RS)和应力-应变滞后响应等参数进行了评估。随后,在DT测试完成后,进行了一系列扫描电镜(SEM)测试,以跟踪纤维-土界面结合情况。结果表明,N和CS对未加筋路基的MR有明显的降低,且RS变形显著升高。然而,由于纤维与土壤的粘附性,剑麻纤维的加入引起了相反的反应,并且增强的路基表现出高延性反应。当纤维包涵量为0.25%和0.5%时,抗CS能力略有下降。随着纤维含量的增加,轴向应变成比例增加,应力-应变滞回线增加,从而导致试样的能量吸收显著增加。DT试验后的SEM显微照片显示纤维与土壤的黏附紧密。研究表明,加固后的路基保持了CS、N、能量吸收能力和MRupon纤维包裹体的增强。Doi: 10.28991/CEJ-2023-09-08-015全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信