{"title":"Accuracy of Distributed Strain Sensing with Single-Mode Fibre in Composite Laminates under Thermal and Vibration Loads","authors":"Yingwu Li, Zahra Sharif-Khodaei","doi":"10.1155/2023/9269987","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this work, the strain measurement accuracy of single-mode fibre (SMF) under thermal and vibration loads is investigated by strain-frequency shift coefficient analyses. This research allows for the application of SMF sensors for structural health monitoring in real operational conditions. The strain measurement accuracy under combined static and thermal load is investigated experimentally, which demonstrated that temperature fluctuations induce non-negligible errors in the strain measurement, even with temperature compensation applied. The temperature fluctuation range which can induce measurement errors is quantified as less than −20°C or higher than 55°C. In addition, a fatigue experiment is conducted to investigate the measurement accuracy under low-frequency vibration load. The results of the fatigue experiment demonstrate that the vibrations mainly increase the ratio of null values in strain measurements. Findings from experiments can be applied to enhance structural health monitoring accuracy and reduce false positives. This study has important implications for the service application of distributed optical fibre sensing for composite structure health monitoring.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2023 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9269987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/9269987","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the strain measurement accuracy of single-mode fibre (SMF) under thermal and vibration loads is investigated by strain-frequency shift coefficient analyses. This research allows for the application of SMF sensors for structural health monitoring in real operational conditions. The strain measurement accuracy under combined static and thermal load is investigated experimentally, which demonstrated that temperature fluctuations induce non-negligible errors in the strain measurement, even with temperature compensation applied. The temperature fluctuation range which can induce measurement errors is quantified as less than −20°C or higher than 55°C. In addition, a fatigue experiment is conducted to investigate the measurement accuracy under low-frequency vibration load. The results of the fatigue experiment demonstrate that the vibrations mainly increase the ratio of null values in strain measurements. Findings from experiments can be applied to enhance structural health monitoring accuracy and reduce false positives. This study has important implications for the service application of distributed optical fibre sensing for composite structure health monitoring.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.