Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods

J. Coonjobeeharry, K. E. Spinlove, C. Sanz Sanz, M. Sapunar, N. Došlić, G. Worth
{"title":"Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods","authors":"J. Coonjobeeharry, K. E. Spinlove, C. Sanz Sanz, M. Sapunar, N. Došlić, G. Worth","doi":"10.1098/rsta.2020.0386","DOIUrl":null,"url":null,"abstract":"Three methods for non-adiabatic dynamics are compared to highlight their capabilities. Multi-configurational time-dependent Hartree is a full grid-based solution to the time-dependent Schrödinger equation, variational multi-configurational Gaussian (vMCG) uses a less flexible but unrestricted Gaussian wavepacket basis, and trajectory surface hopping (TSH) replaces the nuclear wavepacket with a swarm of classical trajectories. Calculations with all methods using a model Hamiltonian were performed. The vMCG and TSH were also then run in a direct dynamics mode, with the potential energy surfaces calculated on-the-fly using quantum chemistry calculations. All dynamics calculations used the Quantics package, with the TSH calculations using a new interface to a surface hopping code. A novel approach to calculate adiabatic populations from grid-based quantum dynamics using a time-dependent discrete variable representation is presented, allowing a proper comparison of methods. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2020.0386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Three methods for non-adiabatic dynamics are compared to highlight their capabilities. Multi-configurational time-dependent Hartree is a full grid-based solution to the time-dependent Schrödinger equation, variational multi-configurational Gaussian (vMCG) uses a less flexible but unrestricted Gaussian wavepacket basis, and trajectory surface hopping (TSH) replaces the nuclear wavepacket with a swarm of classical trajectories. Calculations with all methods using a model Hamiltonian were performed. The vMCG and TSH were also then run in a direct dynamics mode, with the potential energy surfaces calculated on-the-fly using quantum chemistry calculations. All dynamics calculations used the Quantics package, with the TSH calculations using a new interface to a surface hopping code. A novel approach to calculate adiabatic populations from grid-based quantum dynamics using a time-dependent discrete variable representation is presented, allowing a proper comparison of methods. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.
混合量子经典动力学还是全量子化动力学?一个统一的代码来比较方法
比较了三种非绝热动力学方法,突出了它们的能力。多构型时变Hartree是时变Schrödinger方程的全网格解,变分多构型高斯(vMCG)使用不太灵活但不受限制的高斯波包基,弹道表面跳变(TSH)用一群经典轨迹代替核波包。使用模型哈密顿量进行了所有方法的计算。vMCG和TSH也在直接动力学模式下运行,并使用量子化学计算实时计算势能面。所有的动力学计算都使用了Quantics包,其中TSH计算使用了一个新的接口到一个表面跳码。提出了一种基于网格的量子动力学计算绝热种群的新方法,使用时变离散变量表示,允许对方法进行适当的比较。这篇文章是主题问题“没有波恩-奥本海默近似的化学”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信