{"title":"Magnetic cellulose nanocrystals: Synthesis by electrostatic self-assembly approach and efficient use for immobilization of papain","authors":"Feng Zhang, Ruonan Wang, Cheng Zhen, Bin Li","doi":"10.1016/j.molcatb.2016.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>Novel magnetic cellulose nanocrystals (MCNCs) prepared via electrostatic self-assembly approach were used as magnetic carriers for efficient immobilization of papain and facilitated recovery of this immobilized enzyme. Zeta potential measurements, Fourier transform infrared spectroscopy and Scanning electron microscope were applied to evaluate the forming mechanism and surface structure of MCNCs. Cellulose nanocrystals (CNCs) were successfully combined with cationic polyethyleneimine (PEI) modified Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs), and the electrostatic interaction between them was a key driving force. The prepared MCNCs were successfully used for the immobilization and separation of papain from the reaction system. When enzyme concentration and pH value of enzyme solution were 0.4<!--> <!-->mg<!--> <!-->mL<sup>−1</sup> and 6, respectively, the resultant immobilized enzyme exhibited the highest enzymatic activity about 227<!--> <!-->μg<!--> <!-->min<sup>−1</sup> <!-->g<sup>−1</sup>. Better pH and thermo stabilities than those of the free papain were also achieved after immobilizing the enzyme on MCNCs. Furthermore, the immobilized papain manifested enhanced tolerability to three different solvents, namely <em>n</em>-butyl alcohol, <em>n</em>-hexane and [Cnpy][NTf<sub>2</sub>], respectively. The prepared MCNCs as the efficient carrier materials have a strong application potential for enzyme immobilization.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 164-171"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.11.017","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 18
Abstract
Novel magnetic cellulose nanocrystals (MCNCs) prepared via electrostatic self-assembly approach were used as magnetic carriers for efficient immobilization of papain and facilitated recovery of this immobilized enzyme. Zeta potential measurements, Fourier transform infrared spectroscopy and Scanning electron microscope were applied to evaluate the forming mechanism and surface structure of MCNCs. Cellulose nanocrystals (CNCs) were successfully combined with cationic polyethyleneimine (PEI) modified Fe3O4 nanoparticles (NPs), and the electrostatic interaction between them was a key driving force. The prepared MCNCs were successfully used for the immobilization and separation of papain from the reaction system. When enzyme concentration and pH value of enzyme solution were 0.4 mg mL−1 and 6, respectively, the resultant immobilized enzyme exhibited the highest enzymatic activity about 227 μg min−1 g−1. Better pH and thermo stabilities than those of the free papain were also achieved after immobilizing the enzyme on MCNCs. Furthermore, the immobilized papain manifested enhanced tolerability to three different solvents, namely n-butyl alcohol, n-hexane and [Cnpy][NTf2], respectively. The prepared MCNCs as the efficient carrier materials have a strong application potential for enzyme immobilization.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.