Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume

V. Datar, H. Seshadri, Jian Song
{"title":"Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume","authors":"V. Datar, H. Seshadri, Jian Song","doi":"10.1090/PROC/15473","DOIUrl":null,"url":null,"abstract":"In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this short note we prove that a Kahler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results of Kewei Zhang and Yuchen Liu on holomorphic rigidity of such Kahler manifolds with the structure theorem of Tian-Wang for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume
具有下里奇界和几乎最大体积的Kähler流形的度量刚度
在这篇简短的笔记中,我们证明了具有低Ricci曲率界和几乎最大体积的Kahler流形是具有Fubini-Study度量的接近投影空间的Gromov-Hausdorff流形。这是通过将张克伟和刘宇晨最近关于这类Kahler流形全纯刚性的结果与几乎爱因斯坦流形的Tian-Wang结构定理相结合来完成的。这可以看作是对体积几乎最大的黎曼流形的形状的复杂模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信