Weighted regularized ASM for face alignment

Guillermo Ruiz, Eduard Ramon, J. G. Giraldez, M. Ballester, F. Sukno
{"title":"Weighted regularized ASM for face alignment","authors":"Guillermo Ruiz, Eduard Ramon, J. G. Giraldez, M. Ballester, F. Sukno","doi":"10.1109/ICIP.2016.7532891","DOIUrl":null,"url":null,"abstract":"Active Shape Models are a powerful and well known method to perform face alignment. In some applications it is common to have shape information available beforehand, such as previously detected landmarks. Introducing this prior knowledge to the statistical model may result of great advantage but it is challenging to maintain this priors unchanged once the statistical model constraints are applied. We propose a new weighted-regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. The performed experiments show how using this projection better performance than competing state of the art methods is achieved.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"18 1","pages":"2906-2910"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Active Shape Models are a powerful and well known method to perform face alignment. In some applications it is common to have shape information available beforehand, such as previously detected landmarks. Introducing this prior knowledge to the statistical model may result of great advantage but it is challenging to maintain this priors unchanged once the statistical model constraints are applied. We propose a new weighted-regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. The performed experiments show how using this projection better performance than competing state of the art methods is achieved.
人脸对齐的加权正则化ASM
主动形状模型是一种功能强大且众所周知的面部对齐方法。在某些应用程序中,通常预先提供形状信息,例如先前检测到的地标。将这种先验知识引入统计模型可能会带来很大的优势,但一旦应用了统计模型约束,要保持这种先验不变是一项挑战。我们提出了一种新的加权正则化投影到参数空间中,使我们能够获得同时满足所施加的形状约束并且根据统计模型是可信的形状。实验结果表明,使用这种投影方法可以获得比现有方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信