TURING INSTABILITY IN A PREDATOR-PREY MODEL IN PATCHY SPACE WITH SELF AND CROSS DIFFUSION

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Aly
{"title":"TURING INSTABILITY IN A PREDATOR-PREY MODEL IN PATCHY SPACE WITH SELF AND CROSS DIFFUSION","authors":"S. Aly","doi":"10.12941/JKSIAM.2013.13.129","DOIUrl":null,"url":null,"abstract":"A spatio-temporal models as systems of ODE which describe two-species Beddington - DeAngelis type predator-prey system living in a habitat of two identical patches linked by migration is investigated. It is assumed in the model that the per capita migration rate of each species is influenced not only by its own but also by the other one’s density, i.e. there is cross diffusion present. We show that a standard (self-diffusion) system may be either stable or unstable, a cross-diffusion response can stabilize an unstable standard system and destabilize a stable standard system. For the diffusively stable model, numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross migration response is an important factor that should not be ignored when pattern emerges.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"28 1","pages":"129-138"},"PeriodicalIF":0.3000,"publicationDate":"2013-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.13.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

A spatio-temporal models as systems of ODE which describe two-species Beddington - DeAngelis type predator-prey system living in a habitat of two identical patches linked by migration is investigated. It is assumed in the model that the per capita migration rate of each species is influenced not only by its own but also by the other one’s density, i.e. there is cross diffusion present. We show that a standard (self-diffusion) system may be either stable or unstable, a cross-diffusion response can stabilize an unstable standard system and destabilize a stable standard system. For the diffusively stable model, numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross migration response is an important factor that should not be ignored when pattern emerges.
具有自扩散和交叉扩散的捕食者-猎物模型的图灵不稳定性
本文研究了一种描述两物种Beddington - DeAngelis型捕食-食饵系统的时空模型,该系统生活在两个由迁徙联系的相同斑块的栖息地中。模型假设各物种的人均迁移率不仅受自身密度的影响,还受其他物种密度的影响,即存在交叉扩散。我们证明了一个标准(自扩散)系统可以是稳定的也可以是不稳定的,交叉扩散响应可以稳定一个不稳定的标准系统,也可以破坏一个稳定的标准系统。对于扩散稳定模型,数值研究表明,当分岔参数达到临界值时,系统发生图灵分岔,交叉迁移响应是模式出现时不可忽视的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信