Optimal control of linear time-varying systems using the Chebyshev wavelets (a comparative approach)

Saeed Radhoush, M. Samavat, M. Vali
{"title":"Optimal control of linear time-varying systems using the Chebyshev wavelets (a comparative approach)","authors":"Saeed Radhoush, M. Samavat, M. Vali","doi":"10.1080/21642583.2014.919887","DOIUrl":null,"url":null,"abstract":"This paper extends the application of continuous Chebyshev wavelet expansions to find the optimal solution of linear time-varying systems using two different approaches. By using the product of two time functions together with the operational matrix of integration, the system of state equations are changed into a set of algebraic equations which can be solved using a digital computer. In addition, the Chebyshev wavelets are more successful to find the optimal solution of linear time-varying systems when compared with the other existing mentioned algorithms. Finally, the main feature of this paper over similar possible works is that the use of the Lagrange multipliers approach gives more accurate results in comparison with the results of the Riccati approach. The given examples support these claims.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"3 1","pages":"691 - 698"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.919887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper extends the application of continuous Chebyshev wavelet expansions to find the optimal solution of linear time-varying systems using two different approaches. By using the product of two time functions together with the operational matrix of integration, the system of state equations are changed into a set of algebraic equations which can be solved using a digital computer. In addition, the Chebyshev wavelets are more successful to find the optimal solution of linear time-varying systems when compared with the other existing mentioned algorithms. Finally, the main feature of this paper over similar possible works is that the use of the Lagrange multipliers approach gives more accurate results in comparison with the results of the Riccati approach. The given examples support these claims.
线性时变系统的切比雪夫小波最优控制(一种比较方法)
本文用两种不同的方法扩展了连续切比雪夫小波展开在线性时变系统求最优解中的应用。利用两个时间函数的乘积和积分运算矩阵,将状态系统方程转化为一组可在数字计算机上求解的代数方程。此外,与已有算法相比,切比雪夫小波更能成功地找到线性时变系统的最优解。最后,本文在类似可能的作品中的主要特点是,与里卡第方法的结果相比,拉格朗日乘子方法的使用给出了更准确的结果。给出的例子支持这些说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信