Applications of density functional theory-based methods in medicinal chemistry

M. Sulpizi, G. Folkers, U. Rothlisberger, P. Carloni, L. Scapozza
{"title":"Applications of density functional theory-based methods in medicinal chemistry","authors":"M. Sulpizi, G. Folkers, U. Rothlisberger, P. Carloni, L. Scapozza","doi":"10.1002/1521-3838(200207)21:2<173::AID-QSAR173>3.0.CO;2-B","DOIUrl":null,"url":null,"abstract":"With the advances in genomics, proteomics and functional genomics new therapeutic targets to be tackled by medicinal chemistry are expected. This article reviews applications of first principle methods to address medicinal chemistry issue related to drug/target interactions. Two selected representative case studies involving therapeutically interesting targets are presented. The first case study presents how DFT can contribute to ameliorate scoring functions for drug screening in particular by enabling the discrimination between inhibitors and substrates. The second example shows the use of DFT within the framework of a QM/MM mixed approach for elucidating mechanisms of reaction. This approach allows defining the electronic state and structure of the reaction transition state whose knowledge is essential for designing potent and specific transition state analogs inhibitors. Finally, addressing the issue of other medicinal chemistry related application of DFT we suggest that DFT has indeed the potentiality of becoming very important for challenging new issues presented to medicinal chemistry in the post genomic era.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":"3 1","pages":"173-181"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200207)21:2<173::AID-QSAR173>3.0.CO;2-B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

With the advances in genomics, proteomics and functional genomics new therapeutic targets to be tackled by medicinal chemistry are expected. This article reviews applications of first principle methods to address medicinal chemistry issue related to drug/target interactions. Two selected representative case studies involving therapeutically interesting targets are presented. The first case study presents how DFT can contribute to ameliorate scoring functions for drug screening in particular by enabling the discrimination between inhibitors and substrates. The second example shows the use of DFT within the framework of a QM/MM mixed approach for elucidating mechanisms of reaction. This approach allows defining the electronic state and structure of the reaction transition state whose knowledge is essential for designing potent and specific transition state analogs inhibitors. Finally, addressing the issue of other medicinal chemistry related application of DFT we suggest that DFT has indeed the potentiality of becoming very important for challenging new issues presented to medicinal chemistry in the post genomic era.
基于密度泛函理论的方法在药物化学中的应用
随着基因组学、蛋白质组学和功能基因组学的发展,药物化学有望攻克新的治疗靶点。本文综述了第一性原理方法在解决药物/靶标相互作用相关的药物化学问题中的应用。两个选定的代表性案例研究涉及治疗有趣的目标提出。第一个案例研究介绍了DFT如何有助于改善药物筛选的评分功能,特别是通过区分抑制剂和底物。第二个例子显示了在QM/MM混合方法的框架内使用DFT来阐明反应机制。这种方法允许定义反应过渡态的电子态和结构,其知识对于设计有效和特定的过渡态类似物抑制剂至关重要。最后,针对其他与DFT相关的药物化学应用问题,我们认为DFT确实有潜力在后基因组时代对药物化学提出的新问题提出挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信