Zhengyang Liu, Xi Chen, R. Servedio, Ying Sheng, Jinyu Xie
{"title":"Distribution-free junta testing","authors":"Zhengyang Liu, Xi Chen, R. Servedio, Ying Sheng, Jinyu Xie","doi":"10.1145/3188745.3188842","DOIUrl":null,"url":null,"abstract":"We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that uses Õ(k2)/є queries (independent of n). Complementing this, our second main result is a lower bound showing that any non-adaptive distribution-free k-junta testing algorithm must make Ω(2k/3) queries even to test to accuracy є=1/3. These bounds establish that while the optimal query complexity of non-adaptive k-junta testing is 2Θ(k), for adaptive testing it is poly(k), and thus show that adaptivity provides an exponential improvement in the distribution-free query complexity of testing juntas.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that uses Õ(k2)/є queries (independent of n). Complementing this, our second main result is a lower bound showing that any non-adaptive distribution-free k-junta testing algorithm must make Ω(2k/3) queries even to test to accuracy є=1/3. These bounds establish that while the optimal query complexity of non-adaptive k-junta testing is 2Θ(k), for adaptive testing it is poly(k), and thus show that adaptivity provides an exponential improvement in the distribution-free query complexity of testing juntas.