Images of fractional Brownian motion with deterministic drift: Positive Lebesgue measure and non-empty interior

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Erraoui, Youssef Hakiki
{"title":"Images of fractional Brownian motion with deterministic drift: Positive Lebesgue measure and non-empty interior","authors":"M. Erraoui, Youssef Hakiki","doi":"10.1017/S0305004122000093","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$B^{H}$\n be a fractional Brownian motion in \n$\\mathbb{R}^{d}$\n of Hurst index \n$H\\in\\left(0,1\\right)$\n , \n$f\\;:\\;\\left[0,1\\right]\\longrightarrow\\mathbb{R}^{d}$\n a Borel function and \n$A\\subset\\left[0,1\\right]$\n a Borel set. We provide sufficient conditions for the image \n$(B^{H}+f)(A)$\n to have a positive Lebesgue measure or to have a non-empty interior. This is done through the study of the properties of the density of the occupation measure of \n$(B^{H}+f)$\n . Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is greater than Hd, then the density is a square integrable function. If, on the other hand, the Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This allows us to establish the result already cited.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"6 1","pages":"693 - 713"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000093","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Let $B^{H}$ be a fractional Brownian motion in $\mathbb{R}^{d}$ of Hurst index $H\in\left(0,1\right)$ , $f\;:\;\left[0,1\right]\longrightarrow\mathbb{R}^{d}$ a Borel function and $A\subset\left[0,1\right]$ a Borel set. We provide sufficient conditions for the image $(B^{H}+f)(A)$ to have a positive Lebesgue measure or to have a non-empty interior. This is done through the study of the properties of the density of the occupation measure of $(B^{H}+f)$ . Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is greater than Hd, then the density is a square integrable function. If, on the other hand, the Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This allows us to establish the result already cited.
具有确定性漂移的分数布朗运动图像:正勒贝格测度和非空内部
摘要设$B^{H}$是赫斯特指数$H\ \左(0,1\右)$ $中的$\mathbb{R}^{d}$ $中的分数布朗运动,$f\;:\;\left[0,1\右]\ longightarrow \mathbb{R}^{d}$ a Borel函数和$ a \子集\left[0,1\右]$ a Borel集合。我们给出了图像$(B^{H}+f)(A)$具有正勒贝格测度或具有非空内部的充分条件。这是通过研究$(B^{H}+f)$的占用测度的密度的性质来实现的。准确地说,我们证明了如果图f的抛物线Hausdorff维数大于Hd,则密度是平方可积函数。另一方面,如果A的Hausdorff维数大于Hd,则它甚至允许存在连续版本。这允许我们建立已经引用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信