P. Madeira, R. Diaz, F. Dray, M. Rayamajhi, E. Lake, M. C. Smith
{"title":"Population genetics comparison of Lilioceris cheni (Coleoptera: Chrysomelidae) colonies released onto Dioscorea bulbifera in Southeastern U.S.A.","authors":"P. Madeira, R. Diaz, F. Dray, M. Rayamajhi, E. Lake, M. C. Smith","doi":"10.1080/09583157.2023.2196016","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multiple importations of Lilioceris cheni, a defoliating beetle of the invasive air potato plant, were received by the ARS-Invasive Plant Research Laboratory from 2002 to 2012. The last two, in 2011 (China) and 2012 (Nepal), formed the basis of two colonies from which releases were made into six Southeastern U.S. States. Colony populations were examined using the mitochondrial COI sequence. Phylogenetics, evolutionary divergence, a haplotype network, population statistics, and migration models were generated for the two colonies, countries of origin, and the inferred populations (clades). Phylogenetics eliminated the possibility of cryptic speciation and alleviated the need for host-range testing of the 2012 Nepalese samples. Evolutionary divergence showed the Chinese colony was 1.65X as divergent as the Nepalese, but one Nepalese clade was the most distinctly different of all clades. AMOVA showed most (>70%) genetic variation resided within rather than between colonies. In contrast, AMOVAs showed high levels (>61.5%) of genetic variation between underlying clades with proportionally less variation within. The haplotype network showed broad agreement with the phylogeny. Clade C, from China, displayed the largest number of haplotypes and the largest mutation-scaled effective population size in MIGRATE software. The best MIGRATE models indicated that migration and descent followed the order of phylogenetic descent. The results suggest that the genetic diversity being offered to the adventive range by these very divergent colonies (and clades) is large and should support great ecological flexibility.","PeriodicalId":8820,"journal":{"name":"Biocontrol Science and Technology","volume":"28 1","pages":"429 - 447"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09583157.2023.2196016","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Multiple importations of Lilioceris cheni, a defoliating beetle of the invasive air potato plant, were received by the ARS-Invasive Plant Research Laboratory from 2002 to 2012. The last two, in 2011 (China) and 2012 (Nepal), formed the basis of two colonies from which releases were made into six Southeastern U.S. States. Colony populations were examined using the mitochondrial COI sequence. Phylogenetics, evolutionary divergence, a haplotype network, population statistics, and migration models were generated for the two colonies, countries of origin, and the inferred populations (clades). Phylogenetics eliminated the possibility of cryptic speciation and alleviated the need for host-range testing of the 2012 Nepalese samples. Evolutionary divergence showed the Chinese colony was 1.65X as divergent as the Nepalese, but one Nepalese clade was the most distinctly different of all clades. AMOVA showed most (>70%) genetic variation resided within rather than between colonies. In contrast, AMOVAs showed high levels (>61.5%) of genetic variation between underlying clades with proportionally less variation within. The haplotype network showed broad agreement with the phylogeny. Clade C, from China, displayed the largest number of haplotypes and the largest mutation-scaled effective population size in MIGRATE software. The best MIGRATE models indicated that migration and descent followed the order of phylogenetic descent. The results suggest that the genetic diversity being offered to the adventive range by these very divergent colonies (and clades) is large and should support great ecological flexibility.
期刊介绍:
Biocontrol Science and Technology presents original research and reviews in the fields of biological pest, disease and weed control. The journal covers the following areas:
Animal pest control by natural enemies
Biocontrol of plant diseases
Weed biocontrol
''Classical'' biocontrol
Augmentative releases of natural enemies
Quality control of beneficial organisms
Microbial pesticides
Properties of biocontrol agents, modes of actions and methods of application
Physiology and behaviour of biocontrol agents and their interaction with hosts
Pest and natural enemy dynamics, and simulation modelling
Genetic improvement of natural enemies including genetic manipulation
Natural enemy production, formulation, distribution and release methods
Environmental impact studies
Releases of selected and/or genetically manipulated organisms
Safety testing
The role of biocontrol methods in integrated crop protection
Conservation and enhancement of natural enemy populations
Effects of pesticides on biocontrol organisms
Biocontrol legislation and policy, registration and commercialization.