{"title":"Automatic Music Transcription Leveraging Generalized Cepstral Features and Deep Learning","authors":"Yu-Te Wu, Berlin Chen, Li Su","doi":"10.1109/ICASSP.2018.8462079","DOIUrl":null,"url":null,"abstract":"Spectral features are limited in modeling musical signals with multiple concurrent pitches due to the challenge to suppress the interference of the harmonic peaks from one pitch to another. In this paper, we show that using multiple features represented in both the frequency and time domains with deep learning modeling can reduce such interference. These features are derived systematically from conventional pitch detection functions that relate to one another through the discrete Fourier transform and a nonlinear scaling function. Neural networks modeled with these features outperform state-of-the-art methods while using less training data.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"401-405"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Spectral features are limited in modeling musical signals with multiple concurrent pitches due to the challenge to suppress the interference of the harmonic peaks from one pitch to another. In this paper, we show that using multiple features represented in both the frequency and time domains with deep learning modeling can reduce such interference. These features are derived systematically from conventional pitch detection functions that relate to one another through the discrete Fourier transform and a nonlinear scaling function. Neural networks modeled with these features outperform state-of-the-art methods while using less training data.