From Soft Classifiers to Hard Decisions: How fair can we be?

R. Canetti, A. Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler, Adam D. Smith
{"title":"From Soft Classifiers to Hard Decisions: How fair can we be?","authors":"R. Canetti, A. Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler, Adam D. Smith","doi":"10.1145/3287560.3287561","DOIUrl":null,"url":null,"abstract":"A popular methodology for building binary decision-making classifiers in the presence of imperfect information is to first construct a calibrated non-binary \"scoring\" classifier, and then to post-process this score to obtain a binary decision. We study various fairness (or, error-balance) properties of this methodology, when the non-binary scores are calibrated over all protected groups, and with a variety of post-processing algorithms. Specifically, we show: First, there does not exist a general way to post-process a calibrated classifier to equalize protected groups' positive or negative predictive value (PPV or NPV). For certain \"nice\" calibrated classifiers, either PPV or NPV can be equalized when the post-processor uses different thresholds across protected groups. Still, when the post-processing consists of a single global threshold across all groups, natural fairness properties, such as equalizing PPV in a nontrivial way, do not hold even for \"nice\" classifiers. Second, when the post-processing stage is allowed to defer on some decisions (that is, to avoid making a decision by handing off some examples to a separate process), then for the non-deferred decisions, the resulting classifier can be made to equalize PPV, NPV, false positive rate (FPR) and false negative rate (FNR) across the protected groups. This suggests a way to partially evade the impossibility results of Chouldechova and Kleinberg et al., which preclude equalizing all of these measures simultaneously. We also present different deferring strategies and show how they affect the fairness properties of the overall system. We evaluate our post-processing techniques using the COMPAS data set from 2016.","PeriodicalId":20573,"journal":{"name":"Proceedings of the Conference on Fairness, Accountability, and Transparency","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287560.3287561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

A popular methodology for building binary decision-making classifiers in the presence of imperfect information is to first construct a calibrated non-binary "scoring" classifier, and then to post-process this score to obtain a binary decision. We study various fairness (or, error-balance) properties of this methodology, when the non-binary scores are calibrated over all protected groups, and with a variety of post-processing algorithms. Specifically, we show: First, there does not exist a general way to post-process a calibrated classifier to equalize protected groups' positive or negative predictive value (PPV or NPV). For certain "nice" calibrated classifiers, either PPV or NPV can be equalized when the post-processor uses different thresholds across protected groups. Still, when the post-processing consists of a single global threshold across all groups, natural fairness properties, such as equalizing PPV in a nontrivial way, do not hold even for "nice" classifiers. Second, when the post-processing stage is allowed to defer on some decisions (that is, to avoid making a decision by handing off some examples to a separate process), then for the non-deferred decisions, the resulting classifier can be made to equalize PPV, NPV, false positive rate (FPR) and false negative rate (FNR) across the protected groups. This suggests a way to partially evade the impossibility results of Chouldechova and Kleinberg et al., which preclude equalizing all of these measures simultaneously. We also present different deferring strategies and show how they affect the fairness properties of the overall system. We evaluate our post-processing techniques using the COMPAS data set from 2016.
从软分类到硬决策:我们能做到多公平?
在存在不完全信息的情况下构建二元决策分类器的一种流行方法是首先构建一个校准的非二元“评分”分类器,然后对该评分进行后处理以获得二元决策。我们研究了这种方法的各种公平性(或错误平衡)属性,当非二进制分数在所有受保护组上进行校准时,并使用各种后处理算法。具体来说,我们表明:首先,不存在一种通用的方法来后处理校准的分类器来平衡保护组的正或负预测值(PPV或NPV)。对于某些“好的”校准分类器,当后处理器在保护组中使用不同的阈值时,PPV或NPV都可以均衡。尽管如此,当后处理包含跨所有组的单个全局阈值时,自然公平性属性,例如以非平凡的方式均衡PPV,即使对于“好的”分类器也不适用。其次,当后处理阶段允许延迟某些决策(即通过将一些示例交给单独的进程来避免做出决策)时,则对于非延迟决策,可以使生成的分类器在受保护组中均衡PPV, NPV,假阳性率(FPR)和假阴性率(FNR)。这提示了一种方法,可以部分地逃避Chouldechova和Kleinberg等人的不可能结果,该结果排除了同时均衡所有这些测量。我们还提出了不同的延迟策略,并展示了它们如何影响整个系统的公平性属性。我们使用2016年的COMPAS数据集来评估我们的后处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信