{"title":"Hybrid PSO-ANFIS for Speaker Recognition","authors":"Samiya Silarbi, R. Tlemsani, A. Bendahmane","doi":"10.4018/ijcini.20210401.oa7","DOIUrl":null,"url":null,"abstract":"This paper introduces an evolutionary approach for training the adaptive network-based fuzzy inference system (ANFIS). The previous works are based on gradient descendent (GD); this algorithm converges very slowly and gets stuck down at bad local minima. This study applies one of the swarm intelligent branches, named particle swarm optimization (PSO), where the premise parameters of the rules are optimized by a PSO, and the conclusion part is optimized by least-squares estimation (LSE). The hybrid PSO-ANFIS model is performed for speaker recognition on CHAINS speech dataset. The results obtained by the hybrid model showed an improvement on the accuracy compared to similar ANFIS based on gradient descendent optimization.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"2 1","pages":"96-109"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces an evolutionary approach for training the adaptive network-based fuzzy inference system (ANFIS). The previous works are based on gradient descendent (GD); this algorithm converges very slowly and gets stuck down at bad local minima. This study applies one of the swarm intelligent branches, named particle swarm optimization (PSO), where the premise parameters of the rules are optimized by a PSO, and the conclusion part is optimized by least-squares estimation (LSE). The hybrid PSO-ANFIS model is performed for speaker recognition on CHAINS speech dataset. The results obtained by the hybrid model showed an improvement on the accuracy compared to similar ANFIS based on gradient descendent optimization.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.