Zack Z. Zhu, Ulf Blanke, Alberto Calatroni, G. Tröster
{"title":"Prior knowledge of human activities from social data","authors":"Zack Z. Zhu, Ulf Blanke, Alberto Calatroni, G. Tröster","doi":"10.1145/2493988.2494343","DOIUrl":null,"url":null,"abstract":"We explore the feasibility of utilizing large, crowd-generated online repositories to construct prior knowledge models for high-level activity recognition. Towards this, we mine the popular location-based social network, Foursquare, for geo-tagged activity reports. Although unstructured and noisy, we are able to extract, categorize and geographically map people's activities, thereby answering the question: what activities are possible where? Through Foursquare text only, we obtain a testing accuracy of 59.2% with 10 activity categories; using additional contextual cues such as venue semantics, we obtain an increased accuracy of 67.4%. By mapping prior odds of activities via geographical coordinates, we directly benefit activity recognition systems built on geo-aware mobile phones.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"1 1","pages":"141-142"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We explore the feasibility of utilizing large, crowd-generated online repositories to construct prior knowledge models for high-level activity recognition. Towards this, we mine the popular location-based social network, Foursquare, for geo-tagged activity reports. Although unstructured and noisy, we are able to extract, categorize and geographically map people's activities, thereby answering the question: what activities are possible where? Through Foursquare text only, we obtain a testing accuracy of 59.2% with 10 activity categories; using additional contextual cues such as venue semantics, we obtain an increased accuracy of 67.4%. By mapping prior odds of activities via geographical coordinates, we directly benefit activity recognition systems built on geo-aware mobile phones.