{"title":"Barker's algorithm for Bayesian inference with intractable likelihoods","authors":"F. Gonccalves, K. Latuszy'nski, G. Roberts","doi":"10.1214/17-BJPS374","DOIUrl":null,"url":null,"abstract":"In this expository paper we abstract and describe a simple MCMC scheme for sampling from intractable target densities. The approach has been introduced in Gon\\c{c}alves et al. (2017a) in the specific context of jump-diffusions, and is based on the Barker's algorithm paired with a simple Bernoulli factory type scheme, the so called 2-coin algorithm. In many settings it is an alternative to standard Metropolis-Hastings pseudo-marginal method for simulating from intractable target densities. Although Barker's is well-known to be slightly less efficient than Metropolis-Hastings, the key advantage of our approach is that it allows to implement the \"marginal Barker's\" instead of the extended state space pseudo-marginal Metropolis-Hastings, owing to the special form of the accept/reject probability. We shall illustrate our methodology in the context of Bayesian inference for discretely observed Wright-Fisher family of diffusions.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-BJPS374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this expository paper we abstract and describe a simple MCMC scheme for sampling from intractable target densities. The approach has been introduced in Gon\c{c}alves et al. (2017a) in the specific context of jump-diffusions, and is based on the Barker's algorithm paired with a simple Bernoulli factory type scheme, the so called 2-coin algorithm. In many settings it is an alternative to standard Metropolis-Hastings pseudo-marginal method for simulating from intractable target densities. Although Barker's is well-known to be slightly less efficient than Metropolis-Hastings, the key advantage of our approach is that it allows to implement the "marginal Barker's" instead of the extended state space pseudo-marginal Metropolis-Hastings, owing to the special form of the accept/reject probability. We shall illustrate our methodology in the context of Bayesian inference for discretely observed Wright-Fisher family of diffusions.