Barker's algorithm for Bayesian inference with intractable likelihoods

F. Gonccalves, K. Latuszy'nski, G. Roberts
{"title":"Barker's algorithm for Bayesian inference with intractable likelihoods","authors":"F. Gonccalves, K. Latuszy'nski, G. Roberts","doi":"10.1214/17-BJPS374","DOIUrl":null,"url":null,"abstract":"In this expository paper we abstract and describe a simple MCMC scheme for sampling from intractable target densities. The approach has been introduced in Gon\\c{c}alves et al. (2017a) in the specific context of jump-diffusions, and is based on the Barker's algorithm paired with a simple Bernoulli factory type scheme, the so called 2-coin algorithm. In many settings it is an alternative to standard Metropolis-Hastings pseudo-marginal method for simulating from intractable target densities. Although Barker's is well-known to be slightly less efficient than Metropolis-Hastings, the key advantage of our approach is that it allows to implement the \"marginal Barker's\" instead of the extended state space pseudo-marginal Metropolis-Hastings, owing to the special form of the accept/reject probability. We shall illustrate our methodology in the context of Bayesian inference for discretely observed Wright-Fisher family of diffusions.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-BJPS374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this expository paper we abstract and describe a simple MCMC scheme for sampling from intractable target densities. The approach has been introduced in Gon\c{c}alves et al. (2017a) in the specific context of jump-diffusions, and is based on the Barker's algorithm paired with a simple Bernoulli factory type scheme, the so called 2-coin algorithm. In many settings it is an alternative to standard Metropolis-Hastings pseudo-marginal method for simulating from intractable target densities. Although Barker's is well-known to be slightly less efficient than Metropolis-Hastings, the key advantage of our approach is that it allows to implement the "marginal Barker's" instead of the extended state space pseudo-marginal Metropolis-Hastings, owing to the special form of the accept/reject probability. We shall illustrate our methodology in the context of Bayesian inference for discretely observed Wright-Fisher family of diffusions.
难处理似然贝叶斯推理的Barker算法
在这篇说明性的论文中,我们抽象并描述了一个简单的MCMC方案,用于从难以处理的目标密度中采样。该方法已在Gon\c{c}alves等人(2017a)中在跳跃扩散的特定背景下引入,并且基于Barker算法与简单的伯努利工厂类型方案配对,即所谓的2硬币算法。在许多情况下,它可以替代标准的Metropolis-Hastings伪边际法来模拟难以处理的目标密度。虽然Barker’s的效率比Metropolis-Hastings略低,但我们的方法的关键优势在于,由于接受/拒绝概率的特殊形式,它允许实现“边缘Barker’s”而不是扩展状态空间的伪边缘Metropolis-Hastings。我们将在离散观察到的Wright-Fisher扩散族的贝叶斯推理的背景下说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信