Uncoupled mixture probability density estimation based on an improved support vector machine model

Y. Cai, Xue-mei Ye, Hongqiao Wang, Qinggang Fan
{"title":"Uncoupled mixture probability density estimation based on an improved support vector machine model","authors":"Y. Cai, Xue-mei Ye, Hongqiao Wang, Qinggang Fan","doi":"10.1109/ICNC.2012.6234690","DOIUrl":null,"url":null,"abstract":"Support vector machine(SVM) is a new approach for probability density estimation problems. But there are some shortcomings in the SVM based method, for example, the method can only optimize the model directly, and the slack factors must belong to the optimized range of solutions. On this basis, an improved SVM model named single slack factor SVM probability density estimation model is proposed in the paper. In this model, the scale of object function is reduced, so the computation efficient is greatly enhanced. The experiment results on uncoupled mixture probability density estimation show the effectiveness and feasibility of the model.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"11 1","pages":"126-129"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector machine(SVM) is a new approach for probability density estimation problems. But there are some shortcomings in the SVM based method, for example, the method can only optimize the model directly, and the slack factors must belong to the optimized range of solutions. On this basis, an improved SVM model named single slack factor SVM probability density estimation model is proposed in the paper. In this model, the scale of object function is reduced, so the computation efficient is greatly enhanced. The experiment results on uncoupled mixture probability density estimation show the effectiveness and feasibility of the model.
基于改进支持向量机模型的非耦合混合概率密度估计
支持向量机(SVM)是一种新的概率密度估计方法。但基于支持向量机的方法存在一些不足,如只能直接对模型进行优化,松弛因子必须在解的优化范围内。在此基础上,提出了一种改进的支持向量机模型——单松弛因子支持向量机概率密度估计模型。该模型减小了目标函数的尺度,大大提高了计算效率。对非耦合混合概率密度估计的实验结果表明了该模型的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信