{"title":"A design utility approach for preferentially sampled spatial data","authors":"Elizabeth J Gray, E. Evangelou","doi":"10.1093/jrsssc/qlad040","DOIUrl":null,"url":null,"abstract":"\n Spatial preferential sampling occurs when the choice of sampling locations depends stochastically on the process of interest. Ignoring this dependence leads to inaccurate inferences. Our framework models experimenter preferences jointly with the spatial process to adjust for this. We dispense with the unrealistic assumption (required by existing methods) of conditional independence of sampling locations by defining a whole design distribution proportional to a utility function on the space of designs. The proposed model likelihood is generally intractable. We provide fitting techniques based on the noisy Markov chain Monte Carlo and demonstrate their usage on a data set of spatially distributed ammonia concentrations.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial preferential sampling occurs when the choice of sampling locations depends stochastically on the process of interest. Ignoring this dependence leads to inaccurate inferences. Our framework models experimenter preferences jointly with the spatial process to adjust for this. We dispense with the unrealistic assumption (required by existing methods) of conditional independence of sampling locations by defining a whole design distribution proportional to a utility function on the space of designs. The proposed model likelihood is generally intractable. We provide fitting techniques based on the noisy Markov chain Monte Carlo and demonstrate their usage on a data set of spatially distributed ammonia concentrations.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.