N. Dragani'c, Franccois Dross, J. Fox, António Girão, F. Havet, D'aniel Kor'andi, W. Lochet, David Munh'a Correia, A. Scott, B. Sudakov
{"title":"Powers of paths in tournaments","authors":"N. Dragani'c, Franccois Dross, J. Fox, António Girão, F. Havet, D'aniel Kor'andi, W. Lochet, David Munh'a Correia, A. Scott, B. Sudakov","doi":"10.1017/S0963548321000067","DOIUrl":null,"url":null,"abstract":"\n In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k=2, showing that there is always a square of a directed path of length , which is best possible.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5
Abstract
In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k=2, showing that there is always a square of a directed path of length , which is best possible.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.