Temperature aware statistical static timing analysis

A. Rogachev, Lu Wan, Deming Chen
{"title":"Temperature aware statistical static timing analysis","authors":"A. Rogachev, Lu Wan, Deming Chen","doi":"10.1109/ICCAD.2011.6105313","DOIUrl":null,"url":null,"abstract":"With technology scaling, the variability of device parameters continues to increase. This impacts both the performance and the temperature profile of the die turning them into a statistical distribution. To the best of our knowledge, no one has considered the impact of the statistical thermal profile during statistical analysis of the propagation delay. We present a statistical static timing analysis (SSTA) tool which considers this interdependence and produces accurate timing estimation. Our average errors for mean and standard deviation are 0.95% and 3.5% respectively when compared against Monte Carlo simulation. This is a significant improvement over SSTA that assumes a deterministic power profile, whose mean and SD errors are 3.7% and 20.9% respectively. However, when considering >90% performance yield, our algorithm's accuracy improvement was not as significant when compared to the deterministic power case. Thus, if one is concerned with the runtime, a reasonable estimate of the performance yield can be obtained by assuming nominal power. Nevertheless, a full statistical analysis is necessary to achieve maximum accuracy.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

With technology scaling, the variability of device parameters continues to increase. This impacts both the performance and the temperature profile of the die turning them into a statistical distribution. To the best of our knowledge, no one has considered the impact of the statistical thermal profile during statistical analysis of the propagation delay. We present a statistical static timing analysis (SSTA) tool which considers this interdependence and produces accurate timing estimation. Our average errors for mean and standard deviation are 0.95% and 3.5% respectively when compared against Monte Carlo simulation. This is a significant improvement over SSTA that assumes a deterministic power profile, whose mean and SD errors are 3.7% and 20.9% respectively. However, when considering >90% performance yield, our algorithm's accuracy improvement was not as significant when compared to the deterministic power case. Thus, if one is concerned with the runtime, a reasonable estimate of the performance yield can be obtained by assuming nominal power. Nevertheless, a full statistical analysis is necessary to achieve maximum accuracy.
温度感知统计静态定时分析
随着技术的规模化,器件参数的可变性不断增加。这影响了模具的性能和温度分布,使它们成为统计分布。据我们所知,在对传播延迟进行统计分析时,还没有人考虑到统计热剖面的影响。我们提出了一个统计静态时序分析(SSTA)工具,它考虑了这种相互依赖性,并产生了准确的时序估计。与蒙特卡罗模拟相比,我们的平均值和标准差的平均误差分别为0.95%和3.5%。这是对假设确定性功率分布的SSTA的显著改进,其平均值和SD误差分别为3.7%和20.9%。然而,当考虑到>90%的性能良率时,与确定性功率情况相比,我们的算法的精度提高并不显着。因此,如果关注运行时间,可以通过假设标称功率来获得性能收益的合理估计。然而,为了达到最大的准确性,全面的统计分析是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信