Convergence for variants of Chebyshev–Halley methods using restricted convergence domains

Q4 Mathematics
I. Argyros, S. George
{"title":"Convergence for variants of Chebyshev–Halley methods using restricted convergence domains","authors":"I. Argyros, S. George","doi":"10.4064/AM2321-4-2017","DOIUrl":null,"url":null,"abstract":"We present a local convergence analysis for some variants of Chebyshev–Halley methods of approximating a locally unique solution of a nonlinear equation in a Banach space setting. We only use hypotheses reaching up to the second Fréchet derivative of the operator involved in contrast to earlier studies using Lipschitz hypotheses on the second Fréchet derivative and other more restrictive conditions. This way the applicability of these methods is expanded. We also show how to improve the semilocal convergence in the earlier studies under the same conditions using our new idea of restricted convergence domains leading to: weaker sufficient convergence criteria, tighter error bounds on the distances involved and an at least as precise information on the location of the solution. Numerical examples where earlier results cannot be applied but our results can, are also provided.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2321-4-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We present a local convergence analysis for some variants of Chebyshev–Halley methods of approximating a locally unique solution of a nonlinear equation in a Banach space setting. We only use hypotheses reaching up to the second Fréchet derivative of the operator involved in contrast to earlier studies using Lipschitz hypotheses on the second Fréchet derivative and other more restrictive conditions. This way the applicability of these methods is expanded. We also show how to improve the semilocal convergence in the earlier studies under the same conditions using our new idea of restricted convergence domains leading to: weaker sufficient convergence criteria, tighter error bounds on the distances involved and an at least as precise information on the location of the solution. Numerical examples where earlier results cannot be applied but our results can, are also provided.
Chebyshev-Halley方法在有限收敛域上的收敛性
本文给出了Banach空间中近似非线性方程局部唯一解的Chebyshev-Halley方法的一些变体的局部收敛性分析。我们只使用涉及算子的第二次fr切特导数的假设,而不是早期的研究在第二次fr切特导数和其他更严格的条件下使用Lipschitz假设。这样就扩大了这些方法的适用性。我们还展示了如何在相同条件下使用我们的限制收敛域的新思想改进早期研究中的半局部收敛性,从而导致:较弱的充分收敛准则,所涉及的距离上的更严格的误差界限以及至少作为精确信息的解的位置。文中还提供了一些数值例子,其中早期的结果不能应用,但我们的结果可以应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信