H. Kazemi, D. Miller, A. Mohan, Y. Jin, M. Crawford, M. Wagenseil, S. Long
{"title":"Ultra-compact G-band 16way power splitter/combiner module fabricated through a new method of 3D-copper additive manufacturing","authors":"H. Kazemi, D. Miller, A. Mohan, Y. Jin, M. Crawford, M. Wagenseil, S. Long","doi":"10.1109/MWSYM.2015.7166718","DOIUrl":null,"url":null,"abstract":"A new design and fabrication methodology for mmw and sub-mmw components is defined. The 3D copper additive manufacturing process is described with a full 3D volumetric 16 way splitter-combiner demonstration at G-band frequency range. The WR4 combiner is folded through design compaction and then sliced through its Z-direction and fabricated as slices to form a final 23 slice stack. The stack was then measured at 200-270 GHz using a WR4 test-through waveguide that traverses through the entire stack. The insertion loss measured at only 0.03 dB/mm showcasing its low loss characteristics. The 16 way splitter -combiner back to back was also tested using micro-machined WR4 through lines, fabricated and measured at an overall insertion loss of 4dB. The results highlight the success of the volumetric design in which a 16 way combiner measures <; 2dB insertion loss and occupies no more than 3.6 cm3 volume.","PeriodicalId":6493,"journal":{"name":"2015 IEEE MTT-S International Microwave Symposium","volume":"20 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2015.7166718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A new design and fabrication methodology for mmw and sub-mmw components is defined. The 3D copper additive manufacturing process is described with a full 3D volumetric 16 way splitter-combiner demonstration at G-band frequency range. The WR4 combiner is folded through design compaction and then sliced through its Z-direction and fabricated as slices to form a final 23 slice stack. The stack was then measured at 200-270 GHz using a WR4 test-through waveguide that traverses through the entire stack. The insertion loss measured at only 0.03 dB/mm showcasing its low loss characteristics. The 16 way splitter -combiner back to back was also tested using micro-machined WR4 through lines, fabricated and measured at an overall insertion loss of 4dB. The results highlight the success of the volumetric design in which a 16 way combiner measures <; 2dB insertion loss and occupies no more than 3.6 cm3 volume.